作业帮 > 数学 > 作业

已知a,b,c分别为三角形ABC三个内角A、B、C的三边,acosC+根号3asinC-b-c=0.若a=2,三角形AB

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 14:09:56
已知a,b,c分别为三角形ABC三个内角A、B、C的三边,acosC+根号3asinC-b-c=0.若a=2,三角形ABC的面积为根号3,求b
已知a,b,c分别为三角形ABC三个内角A、B、C的三边,acosC+根号3asinC-b-c=0.若a=2,三角形AB
一问:sinAcosC+√3sinAsinC-sinB-sinC=0
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC-cosAsinC-sinC=0
√3sinA=1+cosA
因tan(A/2)=(sinA)/(1+cosA)=√3/3
得:A/2=30°,即A=60°
二问:S=1/2 * bcsinA,由一问可知sinA=√3/2,所以bc=4
由余弦定理得,b^2+c^2-a^2=2bc*cosA ,联立bc=4和余弦定理公式和条件a=2,可得b=2 c=2