已知x,y,z∈R,求证:x^2+y^2>=xy+x+y-1
已知x,y属于正R,且x+2y=1,求证xy=
已知x,y∈R+,且x+y=1,求证:xy+1xy≥174
已知x,y∈R*,x+y=xy,求u=x+2y最小值
1.已知:x^2+y^2+z^2=xy+yz+xz 求证:x=y=z
已知:x^2+y^2+z^2=xy+yz+xz 求证:x=y=z
已知x,y,z 大于0,x+y+z=2,求证 xz/y(y+z)+zy/x(x+y)+yx/z(z+x)大于等于2/3
已知x,y,z∈R+,且x+y+z=3,求证:x^2/(y^2+z^2+yz)+y^2/(x^2+z^2+zx)+z^2
已知xyz属于R+,x+y+z=1,求证x^3/(y(1-y))+y^3/(z(1-z))+z^3/(x(1-x))大于
已知x^2+y^2+z^2=1,求证x+y+z-2xyz
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
证明 已知xyz∈R^+, x^2x * y^2y* z^2z≥x^y+x* y^z+x * z^x+y
求教已知x、y、z∈R+,且 [根号下(x^2+y^2)] + z=1,则xy+2xz的最大值为______.