△ABC和△ACE中,∠ABD=∠ACE=90°,∠DAB=∠CAE,M是DE的中点,求证:MB=MC
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 11:07:00
△ABC和△ACE中,∠ABD=∠ACE=90°,∠DAB=∠CAE,M是DE的中点,求证:MB=MC
真巧,这题我以前做过
不过题目似乎打错了,应是 △ABD和△ACE中,∠ABD=∠ACE=90° 吧
证:取AB中点P,AC中点Q,连接PD、PM、QE、QM、
∵P是AB中点,M是BC中点
∴AP‖QM,QM=½AB(三角形中位线平行于第三边,且等于第三边一半)
同理,PM‖AC,PM=½AC
∴四边形APQM是平行四边形(两组对边分别平行的四边形是平行四边形)
∴∠APM=∠AQM(平行四边形对角相等)
∵Rt△ABD中,P是AB中点
∴DP=½AB(直角三角形斜边上的中线等于斜边一半)
∴AP=BP=½AB
∴DP=AP=BP=QM
∴∠1=∠2
∵∠DPA=∠1+∠2
∴∠DPA=2∠1
同理,EQ=AQ=CQ=PM,∠AQE=2∠3
∵∠1=∠3
∴∠DPA=∠AQE
∴∠DPA+∠APM=∠AQE+∠AQM
即∠DPM=∠MQE
在△DPM与△MQE中
DP=MQ
∠DPM=∠MQE
PM=QE
∴△DPM≌△MQE(SAS)
∴MD=ME
不过题目似乎打错了,应是 △ABD和△ACE中,∠ABD=∠ACE=90° 吧
证:取AB中点P,AC中点Q,连接PD、PM、QE、QM、
∵P是AB中点,M是BC中点
∴AP‖QM,QM=½AB(三角形中位线平行于第三边,且等于第三边一半)
同理,PM‖AC,PM=½AC
∴四边形APQM是平行四边形(两组对边分别平行的四边形是平行四边形)
∴∠APM=∠AQM(平行四边形对角相等)
∵Rt△ABD中,P是AB中点
∴DP=½AB(直角三角形斜边上的中线等于斜边一半)
∴AP=BP=½AB
∴DP=AP=BP=QM
∴∠1=∠2
∵∠DPA=∠1+∠2
∴∠DPA=2∠1
同理,EQ=AQ=CQ=PM,∠AQE=2∠3
∵∠1=∠3
∴∠DPA=∠AQE
∴∠DPA+∠APM=∠AQE+∠AQM
即∠DPM=∠MQE
在△DPM与△MQE中
DP=MQ
∠DPM=∠MQE
PM=QE
∴△DPM≌△MQE(SAS)
∴MD=ME
已知△ABC和△ACE是直角三角形,且∠ABD=∠ACE=90°,点C在AB上连接DE,M为DE的中点求MC=MB
如图所示,在△ABC的外侧作Rt△ABD和Rt△ACE,∠ABD=∠ACE=90°,且∠BAD=∠CAE,M是DE的中点
已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连接DE,设M为DE的中点.
已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连接DE,设M为DE的中点.
如图,以△ABC的边AB、AC为斜边在△ABC外作Rt△ABD和Rt△ACE,且∠ABD=∠ACE,M是BC的中点,求证
以△ABC的两边AB,AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M,N
如图,分别以△ABC的AB,AC边为斜边向外作Rt△ABD和Rt△ACE,且使∠ABD =∠ACE,M是BC的中点.试猜
如图,分别以△ABC的AB,AC边为斜边向外作Rt△ABD和Rt△ACE,且使∠ABD=∠ACE,M是BC的中点,试猜想
已知△ABC,分别以AB,AC为边做△ABD和△ACE,且AD=AB,∠DAB=∠CAE,连接DC与BE,G,F分别是D
如图所示,以△ABC的边AB,AC为边,向三角形外做△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE
已知三角形ABC 分别以AB、AC为边向外作三角形ABD和三角形ACE,且AD=AB,AC=AE,∠DAB=∠CAE.
已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G