作业帮 > 数学 > 作业

用分部积分法计算∫arcsine^x/e^xdx

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:40:58
用分部积分法计算∫arcsine^x/e^xdx
用分部积分法计算∫arcsine^x/e^xdx
∫arcsine^x/e^xdx=-∫arcsine^xde^(-x)
=-arcsine^xe^(-x)+∫dx/√[1-e^(2x)]
∫dx/√[1-e^(2x)]用换元
t=√[1-e^(2x)]
x=(1/2)ln(1-t^2)
原式变为∫dt/(1-t^2)
=(1/2)ln|(1+t)/(1-t)|
=(1/2)ln|{1+√[1-e^(2x)]}/{1-√[1-e^(2x)]}|
所以积分为
∫arcsine^x/e^xdx
=-arcsine^xe^(-x)+(1/2)ln|{1+√[1-e^(2x)]}/{1-√[1-e^(2x)]}|+C