定义在R上的函数y=(x),对任何实属x1,x2都有f(x1+x2)=f(x1)+f(x2)判断函数的奇偶性,并证明.
定义在R上的函数y=f(x),对任意x1,x2都有f(x1+x2)=f(x1)+f(x2),判断函数y=f(x)的奇偶性
已知定义在实数上的函数f(x)满足对任意函数,都有f(x1*x2)=f(x1)+f(x2)成立,确定f(x)奇偶性?
设函数f(x)是定义在R上的增函数,且f(x)0,对于任何X1,X2属于R,都有f(x1+x2)=f(x1)*(x2)
设f(x)是定义在R上的函数,且对任何x1,x2∈R都有f(x1+x2)=f(x1)*f(x2),若f(0)≠0,f'(
设函数f(x)是定义域在R上的函数,若对任意X1,X2都有f(X1+X2)+f(x1-x2)=2f(x1)f(x2)求f
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f
1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)
若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且
若定义在R上的函数f(x)对任意的x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x〉0时,f