在数列{an}中,an=2n+3,前n项和Sn=an2+bn+c,n∈N*,其中a,b,c为常数,则a-b+c=( )
数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.若数列{an}为
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
数列前N项和S=an^2+bn+c(a,b,c常数)则数列{an}
数列{an}的前n项和sn=an2 +bn(a,b为常数),试证明{an}是等差数列,并求a1和d.
已知数列{an}的前n项和为sn=3n^2+5n,数列{bn}中,b1=8,64【b(n+1)】-bn=0,且存在常数c
【高中数学】数列{an}的前N项和为Sn,求证:Sn=an2+bn(a,b∈R)是数列{an}为等差
在数列{an}中,a(n+1)=c*an,(c是非零常数),且前n项和Sn=(3^n)+k.则k等于?
证明:数列{an}为等差数列的充要条件是数列{an}的前n项和为sn=an²+bn(其中啊a,b为常数)
在数列(an)中,a(n+1)=c*an(c为非零常数)且前n项和Sn=3^n+k,则k等于
若数列An的前n项和为Sn=an^2+bn+c,(a,b,c属于正整数)则An为等差数列的充要条件是c=0.
在数列{An}中,A(n+1)=c.An(c为非零常数),且其前n项和为Sn=3^n+k,则实数k的值为( ) A.0
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.(1)若数列