已知:6/((n+1)(n+2)(n+3)(n+3))=(a/(n+1))+(b/(n+2))(c/(n+3))(d/(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 13:10:40
已知:
6/((n+1)(n+2)(n+3)(n+3))=(a/(n+1))+(b/(n+2))(c/(n+3))(d/(n+4))
其中a,b,c,d是常数,则a+2b+3c+4d的值为___________.
谢.
6/((n+1)(n+2)(n+3)(n+3))=(a/(n+1))+(b/(n+2))(c/(n+3))(d/(n+4))
其中a,b,c,d是常数,则a+2b+3c+4d的值为___________.
谢.
6/[(n+1)(n+2)(n+3)(n+4)]
=6/{[(n+1)(n+4)][(n+2)(n+3)]}
=6/[(n的平方+5n+4)(n的平方+5n+6)
=3/(n的平方+5n+4) - 3/(n的平方+5n+6)
=3/[(n+1)(n+4)] - 3/[(n+2)(n+3)]
=[1/(n+1) - 1/(n+4)]-[3/(n+2) - 3/(n+3)]
=1/(n+1)+(-3)/(n+2)+3/(n+3)+(-1)/(n+4)
所以:a=1 b=-3 c=3 d=-1
所以:a+2b+3c+4d=1+2*(-3)+3*3+4*(-1)=0
=6/{[(n+1)(n+4)][(n+2)(n+3)]}
=6/[(n的平方+5n+4)(n的平方+5n+6)
=3/(n的平方+5n+4) - 3/(n的平方+5n+6)
=3/[(n+1)(n+4)] - 3/[(n+2)(n+3)]
=[1/(n+1) - 1/(n+4)]-[3/(n+2) - 3/(n+3)]
=1/(n+1)+(-3)/(n+2)+3/(n+3)+(-1)/(n+4)
所以:a=1 b=-3 c=3 d=-1
所以:a+2b+3c+4d=1+2*(-3)+3*3+4*(-1)=0
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
已知1/n^2+3n=A/n+B/n+3,求ab?
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
证明:1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=3^n .(n∈N+)
已知数列{an}的前n项和为Sn=3n^2+8n,则它的通项公式An等于 A 6n+5 B 6n-5 C 6n-1 D
两个共点力的大小分别是3N、4N,它们的合力不可能是 A、1N B、2N C、7N D、9N
A.3M+N B.2M+2N C.M+N D.M+3N
已知三个共点力大小为零,则三个力大小可能是?A .15N.6N.5N B.3N.6N.4N C1N.2N.10 D.1N
定义数列An=x^n+y^n+z^n,则A(n+3)-3A(n+2)+b*A(n+1)-c*An=0
数列{a n}中 ,已知a的第n项=(n^2+n-1)/3
1 + (n + 1) + n*(n + 1) + n*n + (n + 1) + 1 = 2n^2 + 3n + 3
a(n+1)=2an-a(n-1) 3bn-b(n-1)=n