设f(x)在[a,b]上连续,求F(y)=∫a b f(x)|x-y|dx 在(y-b)(y-a)不等于0时的二阶导数.
设f(y)连续,证明∫a→b dx∫a→x f(y)dy=∫a→b f(y)(b-y)dy
函数的凹凸性定理:设y=f(x)在(a,b)内有连续的二阶导数,若点c属于(a,b)是函数y=f(x)的拐点,则f''(
定积分的证明设y=f(x)及y=g(x)在[a,b]上连续.证明: (∫f(x)g(x)dx)^2=0左端的被积函数展开
f(x)在a到b上连续,且f(x)大于0,证明∫(a到b)f(x)dx∫(a到b)dy/f(y)》=(b-a)^2
函数f(x)在区间[a,b]上连续,曲线y=f(x)与直线x=a,x=b,y=o所围成的平面图形的面积等于∫f(x)dx
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则曲线y=f(x)在(a,b)内平行于x轴的
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b都有f(a+b)=f(a)*f
设函数f(x)=x的立方-3ax+b(a不等于0) 若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b
设 f(x)在〔a,b〕上具有一阶连续导数,且|f‘ (x)|≤M,f(a)=f(b)=0,求证∫(a,b)f(x)dx
f(x)在闭区间a到b上连续,F(x)=∫a到x (x-t)f(t)dt,x在a到b上,求F(x)的二阶导数