作业帮 > 数学 > 作业

求证:7|(2222^5555+5555^2222)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 00:43:57
求证:7|(2222^5555+5555^2222)
求证:7|(2222^5555+5555^2222)
证明:
∵2222^5555+5555^2222=(22225)^1111+(55552)^1111
∵2222=7×317+3 ,
5555=7×793+4.
∴2222≡3 ( mod 7);
5555≡4 (mod 7).
∴2222^5≡3^5≡5(mod 7);
5555^2≡4^2≡2 (mod 7).
∴2222^5+5555^2≡5+2≡0 ( mod 7).
即2222^5≡-5555^2 (mod 7).
∴(2222^5)^1111≡(-5555^2)^1111≡-(5555^2)^1111 (mod 7).
∴2222^5555+5555^2222≡0 (mod 7).
∴7|(2222^5555+5555^2222)