设抛物线y=ax^2+bx-2与x轴交于两个不同的点A(-1,0),B(m,0),与y轴交于点C,且∠ACB=90°.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:03:57
设抛物线y=ax^2+bx-2与x轴交于两个不同的点A(-1,0),B(m,0),与y轴交于点C,且∠ACB=90°.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.
(1)如图∵∠ACB=90°,CO⊥AB,
∴OA*OB=OC²,
∴OB=4,∴B(4,0)
∴m=4,
代入y=ax²+bx-2解得a=1/2,b=-3/2,
∴解析式为y=1/2X²-3/2X-2
(2)易知AB²=25,BE²=53,AE²=98,DE²=125,∠BAE=45°,
若存在点P(p,0),则PE²=(6-p)²+49,PD²=(1-p)²+9,
若∠EPD=45°,则PE/AE=PD/AB,或PD/AE=PE/AB
即PE²/AE²=PD²/AB²,或PD²/AE²=PE²/AB²
解得p的值代入DE/BE≠PE/AE,不符题意;
同理若∠EDP=45°,也不符题意;
若∠PED=45°,解得当p=-15时符合题意,
∴P(-15,0)
∴OA*OB=OC²,
∴OB=4,∴B(4,0)
∴m=4,
代入y=ax²+bx-2解得a=1/2,b=-3/2,
∴解析式为y=1/2X²-3/2X-2
(2)易知AB²=25,BE²=53,AE²=98,DE²=125,∠BAE=45°,
若存在点P(p,0),则PE²=(6-p)²+49,PD²=(1-p)²+9,
若∠EPD=45°,则PE/AE=PD/AB,或PD/AE=PE/AB
即PE²/AE²=PD²/AB²,或PD²/AE²=PE²/AB²
解得p的值代入DE/BE≠PE/AE,不符题意;
同理若∠EDP=45°,也不符题意;
若∠PED=45°,解得当p=-15时符合题意,
∴P(-15,0)
如图,设抛物线y=ax2+bx-2与X轴交于两个不同的点A(-1,0),B(m,0),与Y轴交于点C(0,-2),且∠A
如图,设抛物线y=ax2+bx+c与X轴交与两个不同的点A(-1,0),B(m,0),与Y轴交与点C(0,-2),且∠A
抛物线y=ax^2+bx+c(a>0)与x轴交于A(1,0),B(5,0)两点,与y轴交于点M,抛物线的顶点为P,且PB
设二次函数y=ax^2+bx+c(a,b,c均为实数)与x轴交于A,B两点,与y轴交于点C,且抛物线上所有的点中到直线y
二次函数y=ax方+bx+c的图像与x轴交于点A(-8,0)、B(2,0),与y轴交于点C,角ACB=90°(1)、求二
已知二次函数y=ax^2+bx+c(a>0)的图象与x轴交于A、B两点,且点A在点B的左边,与y轴交于点C,且过点M(-
如图抛物线y=ax的平方+bx+c(a>0)与x轴交于A(1,0),B(5,0)两点,与y轴交于点M,抛物线顶点为P,且
已知抛物线y=ax^2+bx+c的对称轴为x=2,且与x轴交于A,B两点,与y轴交于点C,其中A(1,0)C(0,-3)
抛物线y=ax2+bx+3与x轴交于点a(1,0)和点b(-3,o),与y轴交于点c(1)求抛物线的解析式(2)设抛物线
已知抛物线y=ax^2+bx+c的顶点是(-1,-4),且与x轴交与A,B(1,0)两点,交y轴于点C.1.求此抛物线解
如图,抛物线y=ax^2+bx+c与x轴交于A,D两点,与y轴交于点c,抛物线的顶点b在第一象限,若点A的坐标为(1,0
设a,b,c为实数,且a≠0,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的顶点在直线y=-