作业帮 > 数学 > 作业

已知函数y=(sinx+cosx)^2+2cos^2x.问:求它的最小值与最大值及其取得最值时的X的值.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:54:13
已知函数y=(sinx+cosx)^2+2cos^2x.问:求它的最小值与最大值及其取得最值时的X的值.
已知函数y=(sinx+cosx)^2+2cos^2x.问:求它的最小值与最大值及其取得最值时的X的值.
y=1+2sinxcosx+2(cosx)^2=1+sin2x+1+cos2x=√2*sin(2x+π/4)+2 ,
因此,当 2x+π/4=3π/2+2kπ ,即 x=5π/8+kπ 时,函数取最小值 2-√2 ;
当 2x+π/4=π/2+2kπ ,即 x=π/8+kπ 时,函数取最大值 2+√2 .(以上 k∈Z)