来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:03:07
求证:三个连续整数的立方和是9的倍数
如题
设一个整数为t
(t+1)^3+t^3+(t-1)^3=3t^3+6t=3t (t^2+2)
所以,只需证3t (t^2+2)被9整除即可
若t本身就是3的倍数,则3t就可以被9整除了,得证
若t不是3的倍数,则不论t被3除余1还是余2,(t^2+2)都可以被3整除——
(3k+1)^2+2=9k^2+6k+3满足,(3k+2)^2+2=9k^2+12k+6也满足,所以3t (t^2+2)就可以被9整除
综上,t为任意整数,三个数之和都可以被9整除.证毕