作业帮 > 数学 > 作业

在三角形ABC中,BC=1,AB=根号3,AC=根号6,点P是三角形ABC外接圆上一动点,求向量BP与向量BC数量积的最

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/07 01:30:19
在三角形ABC中,BC=1,AB=根号3,AC=根号6,点P是三角形ABC外接圆上一动点,求向量BP与向量BC数量积的最大值是
在三角形ABC中,BC=1,AB=根号3,AC=根号6,点P是三角形ABC外接圆上一动点,求向量BP与向量BC数量积的最
这题首先要求出外接圆的半径:2r=a/sinA,a=1,cosA=(b^2+c^2-a^2)/(2bc)
=(6+3-1)/6sqrt(2)=2sqrt(2)/3,故:sinA=1/3,即:2r=3,即:r=3/2
设O点是△ABC的外心,则:∠BOC=2A,故:cos(∠BOC)=cos(2A)
=1-2sinA^2=7/9,故:OB·OC=|OB|*|OC|*cos(∠BOC)=(9/4)*(7/9)=7/4
而:BP=OP-OB,BC=OC-OB,故:BP·BC=(OP-OB)·(OC-OB)=OP·OC+|OB|^2-OB·OC-OP·OB
=OP·(OC-OB)+|OB|^2-OB·OC=OP·BC+9/4-7/4=OP·BC+1/2
当:OP与BC同向时,OP·BC取得最大值:|OP|*|BC|*cos(0)=(3/2)*1*1=3/2
故BP·BC的最大值:3/2+1/2=2