七年级下册数学第四章二元一次方程组 练习题 30
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 19:57:18
七年级下册数学第四章二元一次方程组 练习题 30
30道题目,也别太简单,也不是适中.只要经典!考试经常出现那种,最好附答案,过程能有个方程就不错了.但是答案一定要对,不然跟你拼命!4月18日之前!
30道题目,也别太简单,也不是适中.只要经典!考试经常出现那种,最好附答案,过程能有个方程就不错了.但是答案一定要对,不然跟你拼命!4月18日之前!
一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是符合题目要求)
1.下列方程中,是二元一次方程的是( )
A.3x-y2=0 B.+=1 C.-y=6 D.4xy=3
2.如果2x-7y=8,那么用含y的代数式表示x正确的是( )
A.y= B.y= C.x= D.x=
3.方程组的解是( )
A. B. C. D.
4.若4x-3y=0,则的值为( )
A.31 B.- C. D.不能确定
5.已知x=2,y=-1是方程2ax-y=3的一个解,则a的值为( )
A.2 B. C.1 D.-1
6.下列各组数中,既是方程2x-y=3的解,又是方程3x+4y=10的解是( )
A. B. C. D.
7.若xa+1y-2b与-x2-by2的和是单项式,则a、b的值分别的( )
A.a=2,b=-1 B.a=2,b=1 C.a=-2,b=1 D.a=-2,b=-1
8.方程3x+2y=5的非负整数解的个数为( )
A.1个 B.2个 C.3个 D.4个
9.如果二元一次方程组的解是二元一次方程2x-3y+12=0的一个解,那么a的值是( )
A. B.- C. D.-
10.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x、y的值为( )
A.x=3,y=2 B.x=2,y=3 C.x=0,y=5 D.x=5,y=0
11.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则要亏本10%,这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )
A.既不获利也不赔本; B.可获利1%; C.要亏本2% ; D.要亏本1%
12.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10°.设∠AOC和∠BOC的度数分别为x、y,则下列正确的方程组为( )
A. B.
C. D.
二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)
13.已知xm-1+2yn+1=0是二元一次方程,则m=_______,n=________.
14.在等式y=kx+b中,当x=0时,y=-1;当x=1时,y=2,则k=______,b=______.
15.已知m-3n=2m+n-15=1,则m=________,n=________.
16.如图,周长为68cm的长方形ABCD被分成7个相同的矩形,长方形ABCD的面积为_________.
17.某种植大户计划安排10个劳动力来耕作30亩土地.这些土地可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表:
每亩所需劳动力(个)
每亩预计产值(元)
蔬菜
3000
水稻
700
为了使所有土地种上作物,全部劳动力都有工作,应安排种蔬菜的劳动力为______人,这时预计产值为________元.
18.方程组的解是________.
19.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是_________.
20.如果一个两位数的个位数字与十位数字的和为5,那么这样的两位数的个数是________.
三、解答题(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤)
21.解下列方程组.(每小题4分,共16分)
(1) (2)
(3) (4)
22.(6分)m为正整数,已知二元一次方程组有整数解,求m.
23.(8分)如图:
24.(10分)“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元.问:这两种商场的原销售价分别为多少元?
答案:
1.C 2.C 3.A
4.B 点拨:∵4x-3y=0,∴4x=3y.
∴=,故选B.
5.B 点拨:由方程的解的概念知2a×2-(-1)=3.∴a=,故选B.
6.C
7.A 点拨:由题意知xa+1y-2b与-x2-by2是同类项,
∴解之得,故选A.
8.A 点拨:由3x+2y=5得y=.
∵ ∴ 解得0≤x≤.
∴x可得0,1.
当x=0时,y=不合题意,应舍去;
当x=1时,y==1.
∴方程3x+2y=5的非负整数解的个数是1,故选A.
9.B 点拨:把a看作已知数,解方程组
解方程组 得 把代入2x-3y+12=0得
2×6a-3×(-3a)+12=0,解得a=-.
10.D 点拨:由互为相反数的概念知
(x+y-5)2+│3y-2x+10│=0.
∴ 解得 故选D.
11.D 点拨:设调价后售出获利、亏本的两台空调的进价分别为x元、y元,
则(1+10%)x=(1-10%)y. 整理,得x=y.
∴=-1%.
即商场要亏本1%,故选D.
12.B 13.2;0 14.3;-1
15.7;2 点拨:已知m-3n=2m+n-15=1,
可得 解得
16.280cm2 点拨:注意观察图形,知2个小长方形的长和5个小长方形的宽相等.
设小长方形的长为xcm,宽为ycm,由题意,得
解得
长方形ABCD的面积为(10+4)×2×10=280(cm2).
17.5;44000 点拨:设应安排种蔬菜的劳动力为x人,预计产值y元,
由题意,得
解得
18.
点拨:
①+② 得2│x│=8,∴│x│=4,∴x=±4.
①-② 得2y=2,∴y=1.
∴
19.千米/时 20.5个
21.(1) (2) (3) (4)
22.解方程组
①+②得(m+3)x=10,∴x=
将x=代入②,得y=.
∵m为正整数,且方程组的解为整数.
∴m为正整数,且x=与y=同时为整数.
∴m=2,m2=4.
点拨:因为要求的是m,与x,y无关.
所以把m当作已知数,用m表示x,y.
23.设一本笔记本需x元,则一枝钢笔需y元,依题意,得
解这个方程,得
答:1本笔记本需2元,1支钢笔需4元.
24.设甲、乙两种商品的原销售价分别为x元,y元,依题意,得
解得
答:甲、乙两种商品的原销售价分别是320元、180元.
1.下列方程中,是二元一次方程的是( )
A.3x-y2=0 B.+=1 C.-y=6 D.4xy=3
2.如果2x-7y=8,那么用含y的代数式表示x正确的是( )
A.y= B.y= C.x= D.x=
3.方程组的解是( )
A. B. C. D.
4.若4x-3y=0,则的值为( )
A.31 B.- C. D.不能确定
5.已知x=2,y=-1是方程2ax-y=3的一个解,则a的值为( )
A.2 B. C.1 D.-1
6.下列各组数中,既是方程2x-y=3的解,又是方程3x+4y=10的解是( )
A. B. C. D.
7.若xa+1y-2b与-x2-by2的和是单项式,则a、b的值分别的( )
A.a=2,b=-1 B.a=2,b=1 C.a=-2,b=1 D.a=-2,b=-1
8.方程3x+2y=5的非负整数解的个数为( )
A.1个 B.2个 C.3个 D.4个
9.如果二元一次方程组的解是二元一次方程2x-3y+12=0的一个解,那么a的值是( )
A. B.- C. D.-
10.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x、y的值为( )
A.x=3,y=2 B.x=2,y=3 C.x=0,y=5 D.x=5,y=0
11.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则要亏本10%,这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )
A.既不获利也不赔本; B.可获利1%; C.要亏本2% ; D.要亏本1%
12.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10°.设∠AOC和∠BOC的度数分别为x、y,则下列正确的方程组为( )
A. B.
C. D.
二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)
13.已知xm-1+2yn+1=0是二元一次方程,则m=_______,n=________.
14.在等式y=kx+b中,当x=0时,y=-1;当x=1时,y=2,则k=______,b=______.
15.已知m-3n=2m+n-15=1,则m=________,n=________.
16.如图,周长为68cm的长方形ABCD被分成7个相同的矩形,长方形ABCD的面积为_________.
17.某种植大户计划安排10个劳动力来耕作30亩土地.这些土地可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表:
每亩所需劳动力(个)
每亩预计产值(元)
蔬菜
3000
水稻
700
为了使所有土地种上作物,全部劳动力都有工作,应安排种蔬菜的劳动力为______人,这时预计产值为________元.
18.方程组的解是________.
19.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是_________.
20.如果一个两位数的个位数字与十位数字的和为5,那么这样的两位数的个数是________.
三、解答题(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤)
21.解下列方程组.(每小题4分,共16分)
(1) (2)
(3) (4)
22.(6分)m为正整数,已知二元一次方程组有整数解,求m.
23.(8分)如图:
24.(10分)“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元.问:这两种商场的原销售价分别为多少元?
答案:
1.C 2.C 3.A
4.B 点拨:∵4x-3y=0,∴4x=3y.
∴=,故选B.
5.B 点拨:由方程的解的概念知2a×2-(-1)=3.∴a=,故选B.
6.C
7.A 点拨:由题意知xa+1y-2b与-x2-by2是同类项,
∴解之得,故选A.
8.A 点拨:由3x+2y=5得y=.
∵ ∴ 解得0≤x≤.
∴x可得0,1.
当x=0时,y=不合题意,应舍去;
当x=1时,y==1.
∴方程3x+2y=5的非负整数解的个数是1,故选A.
9.B 点拨:把a看作已知数,解方程组
解方程组 得 把代入2x-3y+12=0得
2×6a-3×(-3a)+12=0,解得a=-.
10.D 点拨:由互为相反数的概念知
(x+y-5)2+│3y-2x+10│=0.
∴ 解得 故选D.
11.D 点拨:设调价后售出获利、亏本的两台空调的进价分别为x元、y元,
则(1+10%)x=(1-10%)y. 整理,得x=y.
∴=-1%.
即商场要亏本1%,故选D.
12.B 13.2;0 14.3;-1
15.7;2 点拨:已知m-3n=2m+n-15=1,
可得 解得
16.280cm2 点拨:注意观察图形,知2个小长方形的长和5个小长方形的宽相等.
设小长方形的长为xcm,宽为ycm,由题意,得
解得
长方形ABCD的面积为(10+4)×2×10=280(cm2).
17.5;44000 点拨:设应安排种蔬菜的劳动力为x人,预计产值y元,
由题意,得
解得
18.
点拨:
①+② 得2│x│=8,∴│x│=4,∴x=±4.
①-② 得2y=2,∴y=1.
∴
19.千米/时 20.5个
21.(1) (2) (3) (4)
22.解方程组
①+②得(m+3)x=10,∴x=
将x=代入②,得y=.
∵m为正整数,且方程组的解为整数.
∴m为正整数,且x=与y=同时为整数.
∴m=2,m2=4.
点拨:因为要求的是m,与x,y无关.
所以把m当作已知数,用m表示x,y.
23.设一本笔记本需x元,则一枝钢笔需y元,依题意,得
解这个方程,得
答:1本笔记本需2元,1支钢笔需4元.
24.设甲、乙两种商品的原销售价分别为x元,y元,依题意,得
解得
答:甲、乙两种商品的原销售价分别是320元、180元.
七年级下册的数学关于【二元一次方程组】
七年级下册数学实际问题与二元一次方程组
人教版数学七年级下册课课通第八章二元一次方程组
数学七年级二元一次方程组题.
紧急,人教版七年级下册数学书-第八章二元一次方程组的几道练习题的题目!
谁能给我发几套人教版七年级下册数学8章和9章(二元一次方程组和不等式)的练习题
七年级二元一次方程组练习题【多题型】
求各方数学天才 七年级下册数学实际问题与二元一次方程组
七年级下册数学二元一次方程组中习题8.2(8)
七年级下册数学二元一次方程组的几道问题
七年级下册数学二元一次方程组和一元一次方程的应用题(题目+过程+答案)
七年级下册数学二元一次方程组有分母怎么解