大二,线性代数习题,设二次型f(X1,X2,X3)=X1²+X2²+X3²-2(X1X2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 19:54:52
大二,线性代数习题,
设二次型
f(X1,X2,X3)=X1²+X2²+X3²-2(X1X2)-2(X2X3)-2(X3X1),
1求出二次型f的矩阵A的全部特征值
2求可逆矩阵P,使(P的逆阵乘以AP)成为对角阵
3计算A的m次方的绝对值(m是正整数)
很多数学符号我打不出来或者大不清楚题目中的“²”是平方
设二次型
f(X1,X2,X3)=X1²+X2²+X3²-2(X1X2)-2(X2X3)-2(X3X1),
1求出二次型f的矩阵A的全部特征值
2求可逆矩阵P,使(P的逆阵乘以AP)成为对角阵
3计算A的m次方的绝对值(m是正整数)
很多数学符号我打不出来或者大不清楚题目中的“²”是平方
(1)A=
|1,-1,-1|
|-1,1,-1|
|-1,-1,1|
由特征方程|A-入E|=0,得到入(2-入)^(入+1)=0,所以三个特征值分别是-1,2,2
代入(A-入E)x=0,求得三个x特征向量分别是(也就是方程的基础解系)
-1对应的解系(1,1,1),2对应的解系(1,1,-2),(1,0,-1)
(2)所以可逆矩阵P=
|1,1,1|
|1,1,-2|
|1,0,-1|
特征值矩阵B=
|-1,0,0|
|0,2,0|
|0,0,2|
使得A=P^(-1)BP
(3)A的行列式|A|=|B|=-4
所以|A^m|=|A|^m=(-4)的m次方
|1,-1,-1|
|-1,1,-1|
|-1,-1,1|
由特征方程|A-入E|=0,得到入(2-入)^(入+1)=0,所以三个特征值分别是-1,2,2
代入(A-入E)x=0,求得三个x特征向量分别是(也就是方程的基础解系)
-1对应的解系(1,1,1),2对应的解系(1,1,-2),(1,0,-1)
(2)所以可逆矩阵P=
|1,1,1|
|1,1,-2|
|1,0,-1|
特征值矩阵B=
|-1,0,0|
|0,2,0|
|0,0,2|
使得A=P^(-1)BP
(3)A的行列式|A|=|B|=-4
所以|A^m|=|A|^m=(-4)的m次方
关于线性代数问题,设二次型f(x1,x2,x3)=x1*x1+2*x2*x2+x3*x3+2*t*x1x2+2*x1*x
X1≥X2≥X3≥X4≥2,且X2+X3+X4≥X1,求证(X1+X2+X3+X4)²≤4•X1&
已知二次型f(x1 x2 x3)=2x1^2+2x2^+2x3^2+2x1x2,求矩阵A的特征值?
二次型正定的问题.F(x1,x2,x3,..,xn)=x1^2 + 2x1x2 + x2^2 + x3^2 +.+ xn
设f(x1,x2,x3)=x1²-4x1x2+8x1x3+4x2²+4x2x3+x3²,求
设二次型f=(x1,x2,x3)=2x1^2+ax3^2+2x2x3 经正交变换(x1,x2,x3)=p(y1,y2,y
二次型f(x1,x2,x3)=(x1-x2)^2+(x2-x3)^2的矩阵是什么,怎么求?
线性代数 RT.已知二次型f(x1,x2,x3)=(X^T)AX=x1^2-5x2^2+x3^2+2ax1x2+2x1x
将二次型f(x1,x2,x3)=2x1x2+2x1x3-6x2x3 化为标准型和规范型..
求一个正交变换,化二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3为标准型.
若数据X1,X2,X3X4,X5的平均数为3,方差为2,则X1²+X2²+X3²+X4&s
已知一元二次方程x²-2x+m-1=0.设x1,x2是方程的两个实数根,且满足x1²+x1x2=1,