求绝对值不等式性质证明
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 06:16:15
求绝对值不等式性质证明
(1)证明 |a+b|≤|a|+|b|
(2) 证明|a+b|≥|a|-|b|
谢谢!
(1)证明 |a+b|≤|a|+|b|
(2) 证明|a+b|≥|a|-|b|
谢谢!
证明:|a|-|b|≤|a+b|≤|a|+|b|
当a,bb-a,故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
当a,b=0时,IaI=0,IbI=0,那么:|a|-|b|≤|a+b|≤|a|+|b|=0成立.
当a,b>0时,IaI=0,IbI=0,那么:
|a|-|b|=a-b,
Ia+bI=a+b,
|a|+|b|=a+b.而a+b>a-b,故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
当a0时
|a|-|b|=-a-b,
Ia+bI=a+b(|a||b|),
|a|+|b|=-a+b.
而-a+b>a+b且-a+b>-a-b,
故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
当a>0,b|b|)或-b-a(|a|-b-a,且a-b>a+b,
故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
综上所述:|a|-|b|≤|a+b|≤|a|+|b| 成立.
故:|a|-|b|≤|a+b|≤|a|+|b|
打的好累啊.
当a,bb-a,故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
当a,b=0时,IaI=0,IbI=0,那么:|a|-|b|≤|a+b|≤|a|+|b|=0成立.
当a,b>0时,IaI=0,IbI=0,那么:
|a|-|b|=a-b,
Ia+bI=a+b,
|a|+|b|=a+b.而a+b>a-b,故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
当a0时
|a|-|b|=-a-b,
Ia+bI=a+b(|a||b|),
|a|+|b|=-a+b.
而-a+b>a+b且-a+b>-a-b,
故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
当a>0,b|b|)或-b-a(|a|-b-a,且a-b>a+b,
故 |a|-|b|≤|a+b|≤|a|+|b| 成立.
综上所述:|a|-|b|≤|a+b|≤|a|+|b| 成立.
故:|a|-|b|≤|a+b|≤|a|+|b|
打的好累啊.