高二数学 直线与圆已知圆C:(X+4)^2+Y^2=4,圆D的圆心D在Y轴上且与圆C外切.圆D与Y轴交于A、B两点,点P
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/06 08:33:29
高二数学 直线与圆
已知圆C:(X+4)^2+Y^2=4,圆D的圆心D在Y轴上且与圆C外切.圆D与Y轴交于A、B两点,点P为(-3,0).
(1)当点D在Y轴上运动时,就角APB的最大值.
(2)在X轴上是否存在定点Q,当圆D在Y轴上运动时,角AQB是定值?如果存在,求出点Q坐标;如果不存在,说明理由.
已知圆C:(X+4)^2+Y^2=4,圆D的圆心D在Y轴上且与圆C外切.圆D与Y轴交于A、B两点,点P为(-3,0).
(1)当点D在Y轴上运动时,就角APB的最大值.
(2)在X轴上是否存在定点Q,当圆D在Y轴上运动时,角AQB是定值?如果存在,求出点Q坐标;如果不存在,说明理由.
设已知圆圆心为M1 相切圆圆心为M2
设相切圆方程为:
x^2+(y-a)^2=r^2 (a和r>0) (因为y轴上面和y轴下面的情况完全对称 所以考虑其中一种即可)
有勾股定理:
OM2^2+OM1^2=M1M2^2
所以a=根号下(2+r)^2-16
所以不妨设A(0,a+r) B(0,a-r)
kAP=(a+r)/3 kBP=(a-r)/3
将a=根号下(2+r)^2-16代入夹角公式计算后
得tg角APB=6r/(4r-3)
因为r>=2 要使6r/(4r-3)有最大值
即r=2 最大值为12/5
最大角为arctg12/5
若存在 设此点为(-b,0)
则夹角公式代入后得(其实就是将3替换成b)
2br/(b^2+2r-12) 因为r可取R+ 所以当且仅当b=0时 tg角AQB为定值
但可能为0或180度 所以不存在
瞎做瞎做~~~
设相切圆方程为:
x^2+(y-a)^2=r^2 (a和r>0) (因为y轴上面和y轴下面的情况完全对称 所以考虑其中一种即可)
有勾股定理:
OM2^2+OM1^2=M1M2^2
所以a=根号下(2+r)^2-16
所以不妨设A(0,a+r) B(0,a-r)
kAP=(a+r)/3 kBP=(a-r)/3
将a=根号下(2+r)^2-16代入夹角公式计算后
得tg角APB=6r/(4r-3)
因为r>=2 要使6r/(4r-3)有最大值
即r=2 最大值为12/5
最大角为arctg12/5
若存在 设此点为(-b,0)
则夹角公式代入后得(其实就是将3替换成b)
2br/(b^2+2r-12) 因为r可取R+ 所以当且仅当b=0时 tg角AQB为定值
但可能为0或180度 所以不存在
瞎做瞎做~~~
已知圆C:(x+4)^2+y^2=4和点A(-2√3,0),圆D的圆心在y轴上移动,且恒于圆C外切,设圆D与y轴交与点M
已知圆心为C(0,1)的圆与y轴交于A、B两点,与x 轴交于D、E两点,且DE=4根号2,点Q为圆C上的一个动点,过点Q
点P是X轴上一点,以P为圆心的圆分别与X轴,Y轴交于A.B.C.D四点,已知A.B两点的坐标分别为A(‐3,0),B(1
已知双曲线x^2/3-y^2=1,直线y=kx+m与双曲线交于C.D两点,且C,D两点都在以A(0,-1),的圆上
已知,直线y=2/1x+1与y轴交与D,抛物线y=2/1x的平方+bx+c与直线交于A、E两点,与x轴交于B、C两点,且
已知圆C的圆心与点P(-2,1)关于直线y=x+1对称.直线3x+4y-11=0与圆C相交于A,B两点,且丨AB丨=6
已知圆C的圆心与点P(-2,1)关于直线y=x+1对称.直线3x+4y-11=0与圆C相交于A,B两点,且|AB|=6,
已知直线y=2x+4与x轴、y轴分别交于A、D两点,抛物线y=-1/2x2+bx+c经过点A、D,点B是抛物线与x轴的另
已知圆C:(x+4)2+y2=4和点a(-2√ 3,0),圆D的圆心在y轴上移动,且与圆C外切,
已知:抛物线Y=1/2X^2-3X+C交于X轴正半轴于A,B两点,交Y轴于C点,过A,B,C三点作圆D,圆与Y轴相切,求
已知:抛物线Y=1/2X^2-3X+C交于X轴正半轴于A,B两点,交Y轴于C点,过A,B,C三点作圆D,圆与Y轴相切,
已知圆C 经过点A《-2.0》,B《0.2》且圆心在直线y=X上 又直线L Y=Kx+1与圆C交于P,Q两点