AB、AC是圆O中两条相等的弦,两弦的中点M、N在弦PQ.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 21:04:03
AB、AC是圆O中两条相等的弦,两弦的中点M、N在弦PQ.
求证:PM=NQ。不好意思 忘了最重要的了。
求证:PM=NQ。不好意思 忘了最重要的了。
连接PB,QC
△ABC中,M,N分别是AB,AC中点
∴MN‖BC,即PQ‖BC
在圆O中,BC,PQ是平行弦
∴弧PB=弧QC
∴PB=QC,弧QCB=弧QC+弧BC=弧PB+弧BC=弧PBC
∠P,∠Q分别是弧QCB,弧PBC所对的圆周角
∴∠P=∠Q
在等腰△ABC中:AB=AC
∴∠ABC=∠ACB
∵PQ‖BC
∴∠PMB=∠ABC,∠QNC=∠ACB
∴∠PMB=∠QNC
在△PMB和△QNC中:∠PMB=∠QNC,∠P=∠Q,PB=QC
∴△PMB≌△QNC
∴PM=NQ
△ABC中,M,N分别是AB,AC中点
∴MN‖BC,即PQ‖BC
在圆O中,BC,PQ是平行弦
∴弧PB=弧QC
∴PB=QC,弧QCB=弧QC+弧BC=弧PB+弧BC=弧PBC
∠P,∠Q分别是弧QCB,弧PBC所对的圆周角
∴∠P=∠Q
在等腰△ABC中:AB=AC
∴∠ABC=∠ACB
∵PQ‖BC
∴∠PMB=∠ABC,∠QNC=∠ACB
∴∠PMB=∠QNC
在△PMB和△QNC中:∠PMB=∠QNC,∠P=∠Q,PB=QC
∴△PMB≌△QNC
∴PM=NQ
如图,AB,AC是圆O的两条弦且AB=AC,M,N分别是AB,AC的中点,弦PQ过M,N两点,求证PM=NQ
如图,圆O中,弦PQ=PR,M,N分别是PQ和PR的中点.求证:∠OMN=∠ONM
如图,AB,AC为圆O的两条弦,AB=AC,M,N分别为弦AB、AC的中点,过点M、N的直线交圆O于点E、F.
如图,⊙O中,弦PQ=PR,M、N分别是PQ和PR的中点,求证:∠OMN=∠ONM.
如图7,M是线段AB的中点,N是AC的中点,Q是MA的中点,P是NA的中点,求MN:PQ
点M是线段AB的中点,点N是AC的中点,点Q是MA的中点,点P是NA的中点,求MN:PQ
如图,在圆O中,两弦AB与CD的中点分别是P,Q,且弧AB=弧CD,连接PQ.求证:∠APO=∠CQP
OA和OB是圆O的两条互相垂直的半径,M是弦AB的中点,过M作MC‖OA,交弧AB于C,求证弧AC=1/3弧AB
AB和PQ是圆O的两条相交弦,PQ被AB平分于C,过P,Q作两圆的两切线
M是AB的中点,N是BC的中点,O是AC的中点.MN等于OC吗?为什么?
如图在四边形ABCD中,P、M、N、Q分别是AC、AB、CD、MN的中点,AD=BC,求证:PQ垂直MN
如图,在四边形ABCD中,AB=CD,M.N.P.Q分别是AD.BC.BD.AC的中点,求证:MN与PQ互相垂直平分