在△ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC,判断△ABC的形状.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 00:09:00
在△ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC,判断△ABC的形状.
答案是这么说的:
由正弦定理得a=2RsinA b=2RsinB c=2RsinC,则得sin(A-B)+sin(B-C)+sin(C-A)=0
所以 2sin[(A-C)/2]cos[(A-2B+C)/2]-2sin[(A-C)/2]cos[(A-C)/2]=0 ①
所以 2sin[(A-C)/2]×{cos[(A-2B+C)/2]-cos[(A-C)/2]}=0
所以 -4sin[(A-C)/2]sin[(A-B)/2]sin[(C-B)/2]=0 ②
所以A=B或B=C或A=C 因此△ABC为等腰三角形
不理解①②是怎么来的,
答案是这么说的:
由正弦定理得a=2RsinA b=2RsinB c=2RsinC,则得sin(A-B)+sin(B-C)+sin(C-A)=0
所以 2sin[(A-C)/2]cos[(A-2B+C)/2]-2sin[(A-C)/2]cos[(A-C)/2]=0 ①
所以 2sin[(A-C)/2]×{cos[(A-2B+C)/2]-cos[(A-C)/2]}=0
所以 -4sin[(A-C)/2]sin[(A-B)/2]sin[(C-B)/2]=0 ②
所以A=B或B=C或A=C 因此△ABC为等腰三角形
不理解①②是怎么来的,
1是根据这个式子sin(A-B)+sin(B-C)+sin(C-A)=0
将sin(A-B)+sin(B-C)做和差化积,将sin(C-A)做半角分解.
2是将cos[(A-2B+C)/2]-cos[(A-C)/2]做和差化积得到的.
和差化积是三角函数中比较复杂的公式.
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
将sin(A-B)+sin(B-C)做和差化积,将sin(C-A)做半角分解.
2是将cos[(A-2B+C)/2]-cos[(A-C)/2]做和差化积得到的.
和差化积是三角函数中比较复杂的公式.
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
在三角形ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC求三角形的形状?
在三角形abc中求证a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA
在三角形ABC中,求证:a=bcosC+ccosB,b=acosC+ccosA c=acosB+bcosA
用余玹定理证明:在△ABC中,(1)a=bcosC+ccosB(2)b=ccosA+acosC(3)c=acosB+bc
在△ABC中,bcosA=acosB,试判断三角形的形状
在△ABC中2bcosA=根号3 ccosA+根号3 acosC
在三角形ABC中,若acosB=bcosA,判断三角形ABC的形状.
在△ABC中,已知b=ccosA,c=2acosB,试判断三角形ABC的形状
在△ABC中,已知b=ccosA,c=2acosB,试判断三角形的形状
在△ABC中,已知a²-b²=(acosB+bcosA)².判断三角形形状
在△ABC中,bcosA=acosB,则三角形的形状为( )
在三角形ABC中,已知bCOSA=aCOSB,试判断三角形的形状.