高一数学问题,设Sn为数列{αn}的前n项和,Sn=kn^2+n,n∈N*,其中k是常数.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 15:12:46
高一数学问题,设Sn为数列{αn}的前n项和,Sn=kn^2+n,n∈N*,其中k是常数.
(1)求a1及αn(2)若对于任意的m∈N*,am,a2m,a4m成等比数列(以上几个数据是数列哦亲),求k的值
(1)求a1及αn(2)若对于任意的m∈N*,am,a2m,a4m成等比数列(以上几个数据是数列哦亲),求k的值
(1)∵Sn=kn^2+n;
∴a1=S1=k+1;
S(n-1)=k(n-1)^2+n-1;
∴an=Sn-S(n-1)=2kn-k+1;
(2)∵am=2km-k+1;
a2m=4km-k+1;
a4m=8km-k+1;
对于任意的m属于N*,am,a2m,a4m成等比数列;
∴(4km-k+1)²=(2km-k+1)*(8km-k+1);
∴16k²m²-8k(k-1)m+(k-1)²=16k²m²-10k(k-1)m+(k-1)²;
∴8k(k-1)=10k(k-1);
∴k=0或者k=1;
∴a1=S1=k+1;
S(n-1)=k(n-1)^2+n-1;
∴an=Sn-S(n-1)=2kn-k+1;
(2)∵am=2km-k+1;
a2m=4km-k+1;
a4m=8km-k+1;
对于任意的m属于N*,am,a2m,a4m成等比数列;
∴(4km-k+1)²=(2km-k+1)*(8km-k+1);
∴16k²m²-8k(k-1)m+(k-1)²=16k²m²-10k(k-1)m+(k-1)²;
∴8k(k-1)=10k(k-1);
∴k=0或者k=1;
设Sn为数列an的前n项和,Sn=kn*2+n,n∈N*,其中k为常数,求a1,an
设Sn为数列{an}的前n项和,Sn=kn^2+n,n∈非零自然数,其中k是常数(1)求a1及an (2)
设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值
设Sn为数列an的前n项和,Sn=kn∧2+n+r,n∈N*,(k是常数).(1)若an为等差数列,求r的值.(2)若r
:设Sn为数列{an}的前n项和,Sn=kn^2 +n+r,n∈N*,(k是常数) 第一问:若{an}为等差数列,求r的
设Sn为数列{an}的前n项和.Sn=kn的平方+n.求数列{an}的通项an,若成等比数列,求k值…k为常数
设Sn为数列{an}的前n项和,Sn=(-1)^n an - 1/(2^n),n∈N*,则 (1)a3=___ (2)S
设sn为数列an的前n项和,Sn=(-1)^n-1/2^n,n属于N*,则(1)a3=? (2)S1+S2+...+S1
已知数列{an}的前n项和Sn=-1/2n^2+kn,k∈N*,且Sn的最大值为8.1)确定常数k,
已知数列{an}的前n项和Sn=-1/2n^2+kn,k∈N*,且Sn的最大值为8.1)确定常数k
设Sn为数列{an}的前n项和,Sn=kn*n+n,n属于N+.若对于任意的m属于N+,an,a2m,a4m成等比数列求
设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1•Sn,n∈N*