A为n阶方阵,r(A)=r,证存在n阶可逆矩阵P,使PAP^-1的后n-r行全为零
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:58:35
A为n阶方阵,r(A)=r,证存在n阶可逆矩阵P,使PAP^-1的后n-r行全为零
证明:
存在 可逆阵P 使得 PAP^(-1)=B
其中 B是分块矩阵,其左上角的 r*r 子阵B_11 可逆,其余3块都为0.
构造M0 = B C,其中 C是分块矩阵,其右下角是 (n-r)*(n-r)的单位阵E_(n-r),其余3块都为0.
构造Mi,i=1,...,n-r,如下:
Mi 为对角阵,其对角线元素都为1,但有一个例外:第n-i 1个元素为0.
显然 B=M0*M1*...*M(n-r),其中 M0 可逆,r(Mi) = n-1,i=1,...,n-r.
所以 A=P^(-1)BP
= P^(-1)M0*M1*...*M(n-r)P
= D1*D2*.*D(n-r),
其中,D1= P^(-1)M0*M1,
Di = Mi,i = 2,...,n-r-1,
D(n-r)=M(n-r)*P,
为n-r个秩为n-1的n阶矩阵的乘积
存在 可逆阵P 使得 PAP^(-1)=B
其中 B是分块矩阵,其左上角的 r*r 子阵B_11 可逆,其余3块都为0.
构造M0 = B C,其中 C是分块矩阵,其右下角是 (n-r)*(n-r)的单位阵E_(n-r),其余3块都为0.
构造Mi,i=1,...,n-r,如下:
Mi 为对角阵,其对角线元素都为1,但有一个例外:第n-i 1个元素为0.
显然 B=M0*M1*...*M(n-r),其中 M0 可逆,r(Mi) = n-1,i=1,...,n-r.
所以 A=P^(-1)BP
= P^(-1)M0*M1*...*M(n-r)P
= D1*D2*.*D(n-r),
其中,D1= P^(-1)M0*M1,
Di = Mi,i = 2,...,n-r-1,
D(n-r)=M(n-r)*P,
为n-r个秩为n-1的n阶矩阵的乘积
高等代数矩阵证明题A为nxn矩阵,rankA=r,证:存在一个nxn可逆矩阵P使PAP∧(-1)的后n-r行全为0(只用
n阶矩阵A满足A^2=A,秩为r,证明存在可逆n阶矩阵P,使得PAP^-1=[Er,0](底下还有两个0)
设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-
A,B为n阶方阵,且r(A)=r(B).证明:存在可逆矩阵M ,使AMB=O
证明:a为秩是r的m*n矩阵 证明存在可逆阵P和Q,使得PA的后m-r行,AQ的后n-r列全为0.
设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,
线性代数 :若n阶方阵A为不可逆矩阵,则必有R(A)
设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ
一个线性代数问题.若两个n阶方阵A,B乘积为可逆矩阵.那么r(AB)=n 吗?
设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
A是N阶方阵,A的代数余子式都不为零,则R(A)>=n-1,