集合A={x|f(x)=x},B={x|f[f(x)]=x},求证集合A等于集合B
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 12:40:47
集合A={x|f(x)=x},B={x|f[f(x)]=x},求证集合A等于集合B
集合A属于集合B易证 求证集合B属于集合A ——QAQ急!
抱歉漏了条件:f(x)是单调增函数
集合A属于集合B易证 求证集合B属于集合A ——QAQ急!
抱歉漏了条件:f(x)是单调增函数
这个是证明不出来的.
即只能证明出A包含于B
证明如下:
如果a∈A
则a=f(a)
∴f[f(a)]=f(a)=a
∴a∈B
即a的元素一定是B的元素
∴A包含于B
不能证明 B包含于集合A
应该还有别的条件,
f(x)是单调函数,增函数,减函数都可以的.
下面可以使用反证法(增函数)
设 a∈B
则 f[f(a)]=a
假设 f(a)≠a
(1)f(a)>a
则 a=f[f(a)]>f(a)
两者矛盾
(2) f(a)
即只能证明出A包含于B
证明如下:
如果a∈A
则a=f(a)
∴f[f(a)]=f(a)=a
∴a∈B
即a的元素一定是B的元素
∴A包含于B
不能证明 B包含于集合A
应该还有别的条件,
f(x)是单调函数,增函数,减函数都可以的.
下面可以使用反证法(增函数)
设 a∈B
则 f[f(a)]=a
假设 f(a)≠a
(1)f(a)>a
则 a=f[f(a)]>f(a)
两者矛盾
(2) f(a)
函数f(x)=x2+mx+n,A{x|f(x)=x},B{x|f(x-1)>x+5},若A={3},求集合B?
已知函数f(x)=x2+px+q,且集合A={x|x=f(x)},B={x|f[f(x)]=x}
已知函数f(x)=x∧2+px+q,且集合A={x|x=f(x)},B={x|f[f(x)]=x}.求证A包含于B.
已知函数f(x)=x2+ax+b集合A={x丨f(x)=x},集合B={x丨f[f(x)]=x,xΕR},当A={ -1
设函数f(x)=(x-a)/(x-1),集合M={x\f(x)
已知函数f(x)=ax^2-1.设集合A={x|f(x)=x},集合B={x|f[f(x)]=x},且A=B不等于空集,
已知函数 f(x)= x²+ax+b,集合A={f(x)=x} 集合B={f[f(x)]}=x,x∈R},当A
问道关于集合的数学题设二次函数f(x)=x2+px+q,集合A={x|f(x)=x,x属于R},集合B={x|f(x-1
函数f(x)=根号(X+1)/(x-2)的定义域为集合A,G(x)=Lg的定义域集合是B,求集合AB
集合与函数问题函数f(x)=x平方+2x,集合A={(x,y)|f(x)+f(y)≤2},B={(x,y)|f(x)≤f
已知函数f(x)=x2+ax+b,且集合A={x|x=fx},B={x|x=f[f(x)]},(1)求证A包含于B;(2
从集合A到集合B的一个函数记作y=f(x),x∈A