作业帮 > 数学 > 作业

二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 19:13:50
二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.
二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.
实对称矩阵的属于不同特征值的特征向量正交
所以 (2,-1)^T 是A的属于特征值2的特征向量
令P=
1 2
2 -1
则有 P^-1AP = diag(1,2)
所以 A = Pdiag(1,2)P^-1 =
9/5 -2/5
-2/5 6/5