映射的概念.简易说明简易说明!
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:53:45
映射的概念.简易说明
简易说明!
简易说明!
映射,或者射影,在数学及相关的领域经常等同于函数.基于此,部分映射就相当于部分函数,而完全映射相当于完全函数.
在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质的函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等.
在形式逻辑中,这个术语有时用来表示函数谓词(Functional predicate),在那里函数是集合论中谓词的模型.
如果将函数定义中的两个集合从非空集合扩展到任意元素的集合(不限于数),我们可以得到映射的概念:
设A和B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都存在唯一的一个元素与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B.
按照映射的定义,下面的对应都是映射.
⑴设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A中的元素x按照对应关系“乘2加1”和集合B中的元素2x+1对应,这个对应是集合A到集合B的映射.
⑵设A=N*,B={0,1},集合A中的元素按照对应关系“x除以2得的余数”和集合B中的元素对应,这个对应是集合A到集合B的映射.
⑶设A={x|x是三角形},B={y|y>0},集合A中的元素x按照对应关系“计算面积”和集合B中的元素对应,这个对应是集合A到集合B的映射.
⑷设A=R,B={直线上的点},按照建立数轴的方法,是A中的数x与B中的点P对应,这个对应是集合A到集合B的映射.
⑸设A={P|P是直角坐标系中的点},B={(x,y)|x∈R,y∈R},按照建立平面直角坐标系的方法,是A中的点P与B中的有序实数对(x,y)对应,这个对应是集合A到集合B的映射.
给定一个集合A到集合B的映射,且a∈A,b∈B,如果元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象.
映射是数学中描述了两个集合元素之间一种特殊的对应关系的.
映射在不同的领域有很多的名称,它们的本质是相同的.如函数,算子等等.这里要说明,函数是两个数集之间的映射,其他的映射并非函数.
一一映射(双射)是映射中特殊的一种,即两集合元素间的唯一对应,通俗来讲就是一个对一个(多对一).
(由定义可知,图1中所示对应关系不是映射,而其它三图中所示对应关系就是映射.)
或者说,设A B是两个非空的集合,如果按,某一个确定的对应关系f.使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射
映射的成立条件简单的表述就是下面的两条:
1、定义域的遍历性:X中的每个元素x在映射的值域中都有对应对象;
2、对应的唯一性:定义域中的一个元素只能与映射值域中的一个元素对应;
映射的分类:
映射的不同分类是根据映射的结果进行的,从下面的三个角度进行:
1、根据结果的几何性质分类:满射(到上)与非满射(内的);
2、根据结果的分析性质分类:单射(一一的)与非单的;
3、同时考虑几何与分析性质:满的单射(一一对应).
在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质的函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等.
在形式逻辑中,这个术语有时用来表示函数谓词(Functional predicate),在那里函数是集合论中谓词的模型.
如果将函数定义中的两个集合从非空集合扩展到任意元素的集合(不限于数),我们可以得到映射的概念:
设A和B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都存在唯一的一个元素与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B.
按照映射的定义,下面的对应都是映射.
⑴设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A中的元素x按照对应关系“乘2加1”和集合B中的元素2x+1对应,这个对应是集合A到集合B的映射.
⑵设A=N*,B={0,1},集合A中的元素按照对应关系“x除以2得的余数”和集合B中的元素对应,这个对应是集合A到集合B的映射.
⑶设A={x|x是三角形},B={y|y>0},集合A中的元素x按照对应关系“计算面积”和集合B中的元素对应,这个对应是集合A到集合B的映射.
⑷设A=R,B={直线上的点},按照建立数轴的方法,是A中的数x与B中的点P对应,这个对应是集合A到集合B的映射.
⑸设A={P|P是直角坐标系中的点},B={(x,y)|x∈R,y∈R},按照建立平面直角坐标系的方法,是A中的点P与B中的有序实数对(x,y)对应,这个对应是集合A到集合B的映射.
给定一个集合A到集合B的映射,且a∈A,b∈B,如果元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象.
映射是数学中描述了两个集合元素之间一种特殊的对应关系的.
映射在不同的领域有很多的名称,它们的本质是相同的.如函数,算子等等.这里要说明,函数是两个数集之间的映射,其他的映射并非函数.
一一映射(双射)是映射中特殊的一种,即两集合元素间的唯一对应,通俗来讲就是一个对一个(多对一).
(由定义可知,图1中所示对应关系不是映射,而其它三图中所示对应关系就是映射.)
或者说,设A B是两个非空的集合,如果按,某一个确定的对应关系f.使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射
映射的成立条件简单的表述就是下面的两条:
1、定义域的遍历性:X中的每个元素x在映射的值域中都有对应对象;
2、对应的唯一性:定义域中的一个元素只能与映射值域中的一个元素对应;
映射的分类:
映射的不同分类是根据映射的结果进行的,从下面的三个角度进行:
1、根据结果的几何性质分类:满射(到上)与非满射(内的);
2、根据结果的分析性质分类:单射(一一的)与非单的;
3、同时考虑几何与分析性质:满的单射(一一对应).