lim(X→0)【[∫上限X下线0(sin2)tdt]/xcosx】要过程
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 16:23:12
lim(X→0)【[∫上限X下线0(sin2)tdt]/xcosx】要过程
定积分:
∫上限9下限4√x(1+√x)dx
∫上限2下限-1(x^2-1)dx
∫上限2下限1(1/x+x)dx
∫上限π/4下限0(sinx+cosx)dx
∫上限2下限1(√x+1/x^2)dx
定积分:
∫上限9下限4√x(1+√x)dx
∫上限2下限-1(x^2-1)dx
∫上限2下限1(1/x+x)dx
∫上限π/4下限0(sinx+cosx)dx
∫上限2下限1(√x+1/x^2)dx
lim[x→0] {∫[0,x] sin²t/dt} / (xcosx),应用洛必达法则
= lim[x→0] sin²x / (cosx - xsinx)
= (0)² / (1 - 0)
= 0
∫[4,9] √x(1+√x) dx
= ∫[4,9] (√x+x) dx
= (2/3)x^(3/2) + x²/2
= [(2/3)(9)^(3/2) + 9²/2] - [(2/3)(4)^(3/2) + 4²/2]
= 271/6
∫[-1,2] (x²-1) dx
= x³/3 - x
= [2³/3 - 2] - [(-1)³/3 - (-1)]
= 0
∫[1,2] (1/x+x) dx
= ln|x| + x²/2
= [ln2 + 2²/2] - [ln1 + 1²/2]
= 3/2 + ln2
∫[0,π/4] (sinx+cosx) dx
= -cosx + sinx
= [-cos(π/4) + sin(π/4)] - [-cos(0) + sin(0)]
= [-√2/2 + √2/2] - [-1 + 0]
= 1
∫[1,2] (√x + 1/x²) dx
= ∫[1,2] [x^(1/2) + x^(-2)] dx
= (2/3)x^(3/2) - 1/x
= [(2/3)(2)^(3/2) - 1/2] - [(2/3)(1)^(3/2) - 1]
= (4√2)/3 - 1/6
= lim[x→0] sin²x / (cosx - xsinx)
= (0)² / (1 - 0)
= 0
∫[4,9] √x(1+√x) dx
= ∫[4,9] (√x+x) dx
= (2/3)x^(3/2) + x²/2
= [(2/3)(9)^(3/2) + 9²/2] - [(2/3)(4)^(3/2) + 4²/2]
= 271/6
∫[-1,2] (x²-1) dx
= x³/3 - x
= [2³/3 - 2] - [(-1)³/3 - (-1)]
= 0
∫[1,2] (1/x+x) dx
= ln|x| + x²/2
= [ln2 + 2²/2] - [ln1 + 1²/2]
= 3/2 + ln2
∫[0,π/4] (sinx+cosx) dx
= -cosx + sinx
= [-cos(π/4) + sin(π/4)] - [-cos(0) + sin(0)]
= [-√2/2 + √2/2] - [-1 + 0]
= 1
∫[1,2] (√x + 1/x²) dx
= ∫[1,2] [x^(1/2) + x^(-2)] dx
= (2/3)x^(3/2) - 1/x
= [(2/3)(2)^(3/2) - 1/2] - [(2/3)(1)^(3/2) - 1]
= (4√2)/3 - 1/6
lim(x->0)∫(下角标0上角标x)cos^2tdt/x的计算过程!
求极限lim x→0 (x-xcosx)/(x-sinx)
求∫(t*t-x*x)sin tdt的导数,上限x,下限0
(上限x,下限0)x∫f(t)dt + ∫f(t)tdt的导数
求一道极限lim(x→0)∫(sinx→0) sin^2tdt/x^3∫(sinx→0) sin^2tdt= 1/2 -
d/dx[∫(上限x^2 下限0)te^tdt]=?
lim∫ (上限为x+a,下线为x)tsin1/t dt =a lim x趋近于无穷大
用定义计算定积分∫x∧2dx上限3下线0
用积分上限函数∫(1→x)1/tdt定义对数函数lnx(x>0),试证明:ln(ab)=lna+lnb(a>0,...
变上限积分求导:积分(上限3x,下线:0)f(t/3)dt
下列变量在给定的变化过程中为无穷大量的是:xcosx(x→∞) lim(cosx/x)(x→0)
求极限 lim|x->0 [(sinx-xcosx)/(sinx)^3]