作业帮 > 数学 > 作业

求空间曲线的弧长微分(第一类曲线积分)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:10:37
求空间曲线的弧长微分(第一类曲线积分)
如果已经知道曲线Γ:x=φ(t);y=ψ(t);z=ω(t),那么ds=√( [φ‘(t)]^2+[ψ'(t)]^2+[ω'(t)]^2 )
那如果知道的曲线Γ是一般式的话,例如Γ:F(x,y,z)=0;G(x,y,z)=0,那么它的ds是什么呢?有了ds之后又如何计算?是带入化为与x,y,z其中任意两者相关的二重积分吗?
求空间曲线的弧长微分(第一类曲线积分)
空间曲线的弧长积分,只有化为参数方程是常用的
对于Γ:F(x,y,z)和G(x,y,z) = 0
往往可以设为参数方程:x = x(t),y = y(t),z = z(t)
ds = √(dx² + dy² + dz²) dt = √[x'(t)² + y'(t)² + z'(t)²] dt
代入之后就是一个普通的定积分
∫L ƒ(x,y,z) ds
= ∫(α→β) ƒ[x(t),y(t),z(t)] * √[x'(t)² + y'(t)² + z'(t)²] dt
例如Γ是球面x² + y² + z² = 9/2与平面x + z = 1的交线.
将z = 1 - x代入球面方程得(1/2)(x - 1/2)² + (1/4)y² = 1
即[(x - 1/2)/√2]² + (y/2)² = 1
令(x - 1/2)/√2 = cost,y/2 = sint
即x = 1/2 + √2cost,y = 2sint
z = 1 - x = 1 - (1/2 + √2cost) = 1/2 - √2cost
{ x = 1/2 + √2cost
{ y = 2sint
{ z = 1/2 - √2cost
0 ≤ t ≤ 2π
ds = √[x'(t)² + y'(t)² + z'(t)²] dt = 2 dt
所以∫L ƒ(x,y,z) ds
= ∫(0→2π) ƒ(1/2 + √2cost,2sint,1/2 - √2cost) * 2 dt
若ƒ(x,y,z)与曲线方程符合的话,也先将曲线方程代入ƒ(x,y,z)中化简积分
再问: = =这个我已经知道了,而且我问的也不是这个。。。不过我已经解决了,还是谢谢你