已知函数f(x)=x3+lg(x+根号下(x2+1))+2,在负无穷到0上有最小值-5,则函数在0到正无穷的最大值等于?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:45:17
已知函数f(x)=x3+lg(x+根号下(x2+1))+2,在负无穷到0上有最小值-5,则函数在0到正无穷的最大值等于?
因为,[x+√(x²+1)][-x+√(x²+1)] = 1 ,即有:-x+√(x²+1) = 1/[x+√(x²+1)] ,
所以,lg[-x+√(x²+1)] = -lg[x+√(x²+1)] ;
令 g(x) = f(x)-2 = x³+lg[x+√(x²+1)] ,
则 g(-x) = (-x)³+lg{-x+√[(-x)²+1)]} = -x³+lg[-x+√(x²+1)] = -x³-lg[x+√(x²+1)] = -g(x) ,
已知,f(x) 在 (-∞,0) 上有最小值 -5 ,
可得:g(x) = f(x)-2 在 (-∞,0) 上有最小值 -5-2 = -7 ;
因为,g(x) 是奇函数,
所以,g(x) 在 (0,+∞) 上有最大值 7 ,
可得:f(x) = g(x)+2 在 (0,+∞) 上有最大值 7+2 = 9 .
所以,lg[-x+√(x²+1)] = -lg[x+√(x²+1)] ;
令 g(x) = f(x)-2 = x³+lg[x+√(x²+1)] ,
则 g(-x) = (-x)³+lg{-x+√[(-x)²+1)]} = -x³+lg[-x+√(x²+1)] = -x³-lg[x+√(x²+1)] = -g(x) ,
已知,f(x) 在 (-∞,0) 上有最小值 -5 ,
可得:g(x) = f(x)-2 在 (-∞,0) 上有最小值 -5-2 = -7 ;
因为,g(x) 是奇函数,
所以,g(x) 在 (0,+∞) 上有最大值 7 ,
可得:f(x) = g(x)+2 在 (0,+∞) 上有最大值 7+2 = 9 .
已知函数y=f(x)是定义在负无穷到正无穷上的奇函数,且在[0到正无穷]上为增函数
已知函数y=f(x)是定义在负无穷到正无穷上的奇函数,且在[0到正无穷]上为增.求证:y=f(x)在负到0也增
已知函数f(x)=1/(2^x+1),则该函数在(-00,+00)【负无穷到正无穷】上单调递增还是单调递减,有最大值还是
已知函数f(x)是定义域在(负无穷到正无穷)上的偶函数,当x属于(负无穷到0)时,f(x)=x-x的4次方,当x属于(0
关于数学有界性的证明证明函数f(x)=x/1+x2在正无穷到负无穷内有界
若函数f(x)在负无穷到正无穷上连续,当x趋向负无穷时和x趋向正无穷时f(x)的极限都存在,则函数f(x)一致连续.
已知函数f(X)是偶函数,而且在0到正无穷上是减函数,判断f(X)在负无穷到0上是增函数还是减函数,证明
函数y=f(x)是(负无穷到正无穷)上的偶函数,当x=0时f(x)=x2-2x-3,求函数y=f(x)的解析式
已知函数f(x)=lg|x| 证明函数在(负无穷,0)上是减函数
定义在(负无穷,正无穷)上的函数f(x)在(负无穷,2)上是增函数,且函数y=f(x+2)的图像的对称轴是x=0则
判断函数f(x)=根号下x+x^2在区间0到正无穷上是增函数还是减函数
高等数学一题求助设函数y=f(x)在负无穷到正无穷上连续且有