证明四点共圆问题在三角形ADC中,∠D=90°,B是AD上一点,AB是圆O的直径,E是CD上一点,AE交圆O于G,AC交
AB是圆O直径,C是圆O上一点,CD⊥AB于D,E为线段CD上一点,直线AE交圆O于E.求证AC²=AE*AF
如图,在三角形abc中,角b等于90°,o是ab上一点,以o为圆心,ob为半径的圆与ab交于点e,与ac切于点d,ad等
如图,AB是圆O的直径,BC是圆O的切线,切点为B,D是圆O上一点,CD=CB,连接AD.OC.OC交圆O于E,交BD于
在rt三角形abc中角c等于90度,角bac的平分线ad交bc与点d点e是ab上一点,以ae为直径的⊙o过点d交ac于点
如图 在三角形abc中,∠ABC=90°,点O是AB上的一点,一点o为圆心,OB为半径的圆与AB交于点E,与AC切于点D
如图BC为圆O直径,点A是弧BC的中点,D为弧AB上一点,DC交AB于G,AF⊥CD于E,交BC于F,连BE,AE=2G
如图 ab是圆o的直径 bc为圆o的切线,连接ac交圆o于d,e为弧ad上一点,连接ae,be,b
在圆O的内接三角形ABC中,AB=AC,D是圆O上一点,AD的延长线交BC的延长线于点P.
如图所示,CD是圆O的直径,E为圆O上一点,∠EOD=48°,A为DC延长线上一点,AE交圆O于B,且AB=OC,
如图所示,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1
如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD问:证明CD是圆
三角形内接与圆O,AB是圆O直径,点D在圆O上,过点C的切线交AD的延长线与点E,且AE垂直于CE,连接CD 若AB=5