作业帮 > 数学 > 作业

数列{an}中,a1=3,Nan+1-(n+1)an=2n·(n+1)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:05:12
数列{an}中,a1=3,Nan+1-(n+1)an=2n·(n+1)
1求证{an/n}为等差数列,冰球通项公式an.
2设bn=(an-2n^2)·3^n,求数列{bn}的前n项和S.
数列{an}中,a1=3,Nan+1-(n+1)an=2n·(n+1)
1.
nan+1-(n+1)an=2n·(n+1)
等号两边同除n(n+1)得an+1/(n+1)-an/n=2
所以{an/n}为等差数列,公差为2
an/n=a1/1+2(n-1)=3+2(n-1)=2n+1,得出an=n(2n+1)=2n^2+n
2.
bn=(an-2n^2)·3^n=(2n^2+n-2n^2)3^n=n·3^n
所以数列{bn}的前n项和S=1*3^1+2*3^2+……+n·3^n
等式两边同乘以3得3S=1*3^2+2*3^3+……+n·3^(n+1)
两式相减得-2S=3^1+3^2+……+3^n-n·3^(n+1)
=3(1-3^n)/(1-3)-n·3^(n+1)
=1/2*3^(n+1)-3/2-n·3^(n+1)
=(1/2-n)3^(n+1)-3/2
所以S=1/4(2n-1)3^(n+1)+3/4