已知函数f(x)=x3+ax2+bx+3的单调递减区间为(−13,1),单调递增区间为(−∞,−13)和(1,+∞).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:21:44
已知函数f(x)=x3+ax2+bx+3的单调递减区间为(−
,1)
1 |
3 |
(1)f'(x)=3x2+2ax+b
由题设得f'(x)=0的根为x=−
1
3或x=1
由此求得a=b=-1
故f(x)=x3-x2-x+3
(2)g(x)=f(x)-(2x2+8x+t)=x3-3x2-9x+3-t
令g'(x)=3x2-6x-9=0,得x=-1或x=3
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
g'(x) + 0 - 0 +
g(x) 增 极大值 减 极小值 增g(x)极大值=g(-1)=8-t,g(x)极小值=g(3)=-24-t
∴当8-t<0,即t>8时,原方程有一个实数根;
当8-t=0,即t=8时,原方程有两个实数根;
当
8−t>0
−24−t<0即-24<t<8时,原方程有三个实数根;
当-24-t=0,即t=-24时,原方程有两个实数根;
当-24-t>0,即t<-24时,原方程有一个实数根.
综上,当t=-24或t=8时,原方程有两个实数根;
当t<-24或t>8时,原方程有两个实数根;
当-24<t<8时,原方程有三个实数根.
由题设得f'(x)=0的根为x=−
1
3或x=1
由此求得a=b=-1
故f(x)=x3-x2-x+3
(2)g(x)=f(x)-(2x2+8x+t)=x3-3x2-9x+3-t
令g'(x)=3x2-6x-9=0,得x=-1或x=3
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
g'(x) + 0 - 0 +
g(x) 增 极大值 减 极小值 增g(x)极大值=g(-1)=8-t,g(x)极小值=g(3)=-24-t
∴当8-t<0,即t>8时,原方程有一个实数根;
当8-t=0,即t=8时,原方程有两个实数根;
当
8−t>0
−24−t<0即-24<t<8时,原方程有三个实数根;
当-24-t=0,即t=-24时,原方程有两个实数根;
当-24-t>0,即t<-24时,原方程有一个实数根.
综上,当t=-24或t=8时,原方程有两个实数根;
当t<-24或t>8时,原方程有两个实数根;
当-24<t<8时,原方程有三个实数根.
已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
已知不等式ax2+bx+c≥0的解集[-1,3],则函数f(x)=−16bx3+ax2+cx+m单调递增区间为( )
(2012•南宁模拟)已知函数f(x)=x4-x3+ax2-1在区间(0,2)单调递减,在区间(2,3)单调递增.
已知函数f(x)=x3+bx2+cx+1在区间(-∞,-2]上单调递增,在区间[−2,32]上单调递减,若b是非负整数
已知f(x)=x㏑x,g(x)=x3+ax2-x+2 1.如果函数g(x)的单调递减区间为(-1/3,1),求函数g(x
已知函数f(x)=x3+ax2+bx+c,若f(x)在区间(-1,0)上单调递减,则a2+b2的取值范围
已知函数f(x)=3x3-ax2+x-5在区间[1,2]上单调递增,则a的取值范围是( )
函数f(x)=1-½2-x½的单调递减区间是 ,单调递增区间是
已知二次函数y=ax2+bx+c的单调递增区间为(-∞,2],求二次函数y=bx2+ax+c的单调递增区间.
函数f(x)=x3-3x2+1的单调递减区间是( )
函数f(x)=2x3-3x2+10的单调递减区间为______.
函数f(x)=2x3-6x2+7单调递增区间为 ___ .