如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 19:12:51
如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.
(1)求证:AE平分∠CAB;
(2)探求图中∠1与∠C的数量关系,并求当AE=EC时tanC的值.
(1)求证:AE平分∠CAB;
(2)探求图中∠1与∠C的数量关系,并求当AE=EC时tanC的值.
(1)证明:连接OE,
∵⊙O与BC相切于点E,
∴OE⊥BC,
∵AB⊥BC,
∴AB∥OE,
∴∠2=∠AEO,
∵OA=OE,
∴∠1=∠AEO,
∴∠1=∠2,即AE平分∠CAB;
(2)∠C=90°-2∠1,tanC=
3
3.
∵∠EOC是△AOE的外角,
∴∠1+∠AEO=∠EOC,
∵∠1=∠AEO,∠OEC=90°,
∴∠C=90°-2∠1,
当AE=CE时,∠1=∠C,
∵2∠1+∠C=90°
∴3∠C=90°,∠C=30°
∴tanC=tan30°=
3
3.
∵⊙O与BC相切于点E,
∴OE⊥BC,
∵AB⊥BC,
∴AB∥OE,
∴∠2=∠AEO,
∵OA=OE,
∴∠1=∠AEO,
∴∠1=∠2,即AE平分∠CAB;
(2)∠C=90°-2∠1,tanC=
3
3.
∵∠EOC是△AOE的外角,
∴∠1+∠AEO=∠EOC,
∵∠1=∠AEO,∠OEC=90°,
∴∠C=90°-2∠1,
当AE=CE时,∠1=∠C,
∵2∠1+∠C=90°
∴3∠C=90°,∠C=30°
∴tanC=tan30°=
3
3.
如图,已知点O为Rt三角形ABC斜边AC上一点,以O为圆心,OA长为半径的圆O与BC相切于点E,与AC相交于点D,连接A
(2013•常州模拟)如图,已知点O为Rt△ABC斜边上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.
如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若
如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC、BC相切于点D、E
已知O是正方形ABCD的对角线AC上的一点,以O为圆心,OA的长为半径的园O与BC相切于点M,于AB,AD分别相交于点E
已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一点O为圆心的⊙O与BC相切于点C,与AC相交于点D.
已知:如图,Rt△ABC中,点D在斜边AB上,以AD为直径的⊙O与BC相切于点E,连接DE