再用正交变换化二次型为标准形时,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:58:01
再用正交变换化二次型为标准形时,
第一步:求出A
第二布:求出特征值
第三步:求出特征向量
第四部:对特征向量进行正交化,单位化
第五步:做正交变换x=Cy,得到f的标准形
我想请问一下:第三步到第五步有这个必要吗?求出特征值之后,直接写出f=λ1y1^2+λ2y2^2+λ3y3^2.不就可以了吗?
我是这样想的:不是有个定理说实对称矩阵一定是可以对角化的,也就是说,n阶实对称矩阵一定存在n个线性无关的特征向量,也就是说,实对称矩阵的n个特征值(可能会有相等的特征值)所对应的n个特征向量一定是线性无关的,那么这些向量组成的矩阵经过正交化和单位化后得到的矩阵C(正交变换矩阵)的行列式一定不等于0,所以C一定是可逆的,那为什么要按照上面第三步到第五步把C求出来然后验证它是不是等于0呢?第三步至第五步有必要吗?
还有我想问一下,为什么必须对特征向量组成的矩阵正交化和单位化呢?不进行会怎么样呢?
第一步:求出A
第二布:求出特征值
第三步:求出特征向量
第四部:对特征向量进行正交化,单位化
第五步:做正交变换x=Cy,得到f的标准形
我想请问一下:第三步到第五步有这个必要吗?求出特征值之后,直接写出f=λ1y1^2+λ2y2^2+λ3y3^2.不就可以了吗?
我是这样想的:不是有个定理说实对称矩阵一定是可以对角化的,也就是说,n阶实对称矩阵一定存在n个线性无关的特征向量,也就是说,实对称矩阵的n个特征值(可能会有相等的特征值)所对应的n个特征向量一定是线性无关的,那么这些向量组成的矩阵经过正交化和单位化后得到的矩阵C(正交变换矩阵)的行列式一定不等于0,所以C一定是可逆的,那为什么要按照上面第三步到第五步把C求出来然后验证它是不是等于0呢?第三步至第五步有必要吗?
还有我想问一下,为什么必须对特征向量组成的矩阵正交化和单位化呢?不进行会怎么样呢?
若是用正交化方法化二次型 为标准型,则第三步到第五步是必须的,要不你到哪里去求那个正交变换呢?
若不对特征向量进行标准正交化,那就不是正交对角化,而是相似对角化了.
再问: 1.若题目只要求你写出标准型的话,第三步到第五步还有必要吗? 2.那么这些向量组成的矩阵经过正交化和单位化后得到的矩阵C(正交变换矩阵)的行列式一定不等于0,所以C一定是可逆的。我说的这句话正确吗? 3.经过相似对角化转化后也是对角矩阵,写出来也是标准形,为什么不行?为什么必须是正交对角化? 万分感谢!!!
再答: 1. 若题目只要求写出标准型的话,第三步到第五步要不要都行的.2. 矩阵C一定是可逆的.3. 相似对角化用于线性空间的基变换;化二次型为标准型用对称变换.你注意一下化二次型为标准型的过程就能发现这个问题。
若不对特征向量进行标准正交化,那就不是正交对角化,而是相似对角化了.
再问: 1.若题目只要求你写出标准型的话,第三步到第五步还有必要吗? 2.那么这些向量组成的矩阵经过正交化和单位化后得到的矩阵C(正交变换矩阵)的行列式一定不等于0,所以C一定是可逆的。我说的这句话正确吗? 3.经过相似对角化转化后也是对角矩阵,写出来也是标准形,为什么不行?为什么必须是正交对角化? 万分感谢!!!
再答: 1. 若题目只要求写出标准型的话,第三步到第五步要不要都行的.2. 矩阵C一定是可逆的.3. 相似对角化用于线性空间的基变换;化二次型为标准型用对称变换.你注意一下化二次型为标准型的过程就能发现这个问题。
用正交变换化二次型为为标准形时,怎样确定系数矩阵
用正交变换化下列二次型为标准形,并写出变换矩阵
在用正交变换化二次型为标准形时,为什么复习全书上会说求矩阵的特征值和特征向量之后当特征值不同时,...
用正交变换化下列二次型为标准型,并写出正交变换矩阵
求一个正交变换X=PY ,把下列二次型化为标准形
求二次型 ,(1)写出二次型的矩阵A; (2)求一个正交变换化二次型为标准型;
用正交变换化二次型为标准型,并写出所做的线性变换
关于正交变换的问题求达人给解答求正交变换将 化为标准形,写出标准形,并判断该二次型是否正定F(X1.X2.X3)=2X1
1、求一个正交变换,将二次型f(x1,x2)=11x12+24x1x2+4x22化成标准形,并写出所有正交变换的矩阵
求一个正交变换,化二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3为标准型.
求正交变换X=Py,将下列二次型转化为标准形 f=2x(1)^2+x(2)^2-4x(1)x(2)-4x(2)x(3)
求正交变换X=Py,将下列二次型转化为标准形 f=5x(1)^2-8x(1)x(2)-4x(1)x(3)+5x(2)^2