同济线性代数、第一章第4节对换的一个证明我搞不懂,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 00:30:22
同济线性代数、第一章第4节对换的一个证明我搞不懂,
教科书上证明过程如下:
对于行列式的任何一项
(—1)^t·a1p1·…·aipi·…·ajpj·…·anpn,
其中1…i…j…n为自然排列,t为排列p1…pi…pj…pn的逆序数,对换元素aipi与ajpj成
(—1)^t·a1p1·…·ajpj·…·aipi·…·anpn,
这时,这一项的值不变(这一项是哪一项?),而行标排列与列标排列同时作了一次相应的对换,设新的行标排列1…j…i…n的逆序数为r,则r为奇数;设新的列标排列p1…pj…pi…pn的逆序数为t1,则
(—1)^t1=—(—1)^t,故(—1)^t=(—1)^r+t1,(“故”后面的没搞懂,这跟前一句(—1)^t1=—(—1)^t有什么因果关系吗?)
之前你解答过这个问题,那个同学不懂的地方我懂,但是我又再其他地方转不过弯来,
教科书上证明过程如下:
对于行列式的任何一项
(—1)^t·a1p1·…·aipi·…·ajpj·…·anpn,
其中1…i…j…n为自然排列,t为排列p1…pi…pj…pn的逆序数,对换元素aipi与ajpj成
(—1)^t·a1p1·…·ajpj·…·aipi·…·anpn,
这时,这一项的值不变(这一项是哪一项?),而行标排列与列标排列同时作了一次相应的对换,设新的行标排列1…j…i…n的逆序数为r,则r为奇数;设新的列标排列p1…pj…pi…pn的逆序数为t1,则
(—1)^t1=—(—1)^t,故(—1)^t=(—1)^r+t1,(“故”后面的没搞懂,这跟前一句(—1)^t1=—(—1)^t有什么因果关系吗?)
之前你解答过这个问题,那个同学不懂的地方我懂,但是我又再其他地方转不过弯来,
n个数相乘 交换其中两个 n个数的乘积的值不变
但列标也交换了两个数的位置
一个排列,交换两个数的位置,排列的奇偶性发生改变
所以这一项正负号改变 再答: 有因果关系
注意r是奇数,(-1)^r =-1
但列标也交换了两个数的位置
一个排列,交换两个数的位置,排列的奇偶性发生改变
所以这一项正负号改变 再答: 有因果关系
注意r是奇数,(-1)^r =-1
线性代数、排列的对换一章我搞不懂,
我在线性代数同济第五版第一章第12页的例7用行列式展开法得出的答案为什么对不到正确荅案,
同济六版第一章第二节的最后一道证明习题
请问同济六版高数第一章第二节的第一个例题证明中,为什么要设ε
第一章 勾股定理 到底该怎么理解啊 我搞不懂 还有 到底该怎么算啊 我真的 是搞不懂啊
同济线性代数的一道习题.
初一科学下册第一章的第6小节“眼和视觉”我不懂那些什么
一个中学英语句子,我搞不懂
我有一个英语句子搞不懂,
线性代数第一章的两道小题
同济第四版线性代数在证明矩阵的秩等于行向量的秩时,我有个疑问,过程是这样的:
同济第五版线性代数在证明矩阵的秩等于列向量的秩时,我有个疑问,过程是这样的