设f(x)在(a,b)内可导,且f'(x)的绝对值小于等于M,证明:f(x)在(a,b)内有界.最好是贴图哦,亲
证明:如果函数f(x)在[a,b]上可导,且(f(x)导数的绝对值)小于等于M,则,[(f(b)-f(a))的绝对值 .
如果函数f(x)在区间(a,b)内可导,且存在常数M使|f'(x)|小于等于M,试证f(x)在(a,b)内有界
若f(x)在[a,b]上连续,在(a,b)内可导,|f'(x)|小于等于M,f(a)=0,求证:f(x)dx在[a,b]
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]
设f(X)在[a,b]上连续,且f(a)小于a,f(b)大于b,证明在区间(a,b)内至少存在一点m,使f(m)=m
设f(x)在[a,b]二阶可导,且f''(x)
f(x)在[a,b]内2阶可导,f(x)二阶导数的绝对值小于等于M;有在(a,b)内部去等取得最小值
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
设函数f(x)在(a,b)内连续,且f(a+),f(b-)存在,证明:函数f(x)在(a,b)内有界.
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设函数f(x)等于log以10为底x的对数的绝对值,若b大于a大于0.且f(a)大于f(b),证明ab小于1
函数f(x)是定义域为 a小于等于(绝对值X)小于等于b,b>a>0的偶函数 在【0,b】