设二维随机向量(X,Y)在区域G={(x,y)\0≤x≤1,x²≤y≤x}上服从均匀分布,求边缘概率密度函数f
设二维随机变量(X,Y)在区域D上服从均匀分布,D是由直线x=0,y=0和x+y=1围成的闭区域,求X和Y的边缘概率密度
设G为由抛物线y=x*x和y=x所围成区域,(X,Y)在区域G上服从均匀分布,求:(1)X,Y 的联合概率密度及边缘概率
设二维随机向量(X,Y)服从区域D上的均匀分布,D={(X,Y),X2+Y2≤1},那么
二维随机变量(X,Y)在D:0≤x≤2,-1≤y≤1上均匀分布,则(X,Y)联合密度函数f(x,y)=,X边缘概率密度f
设二维随机变量x y在由y=1-x^2 与y=0所围区域d上服从均匀分布 写出x y的概率密度与边缘密度概率
设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求
设二维随机向量(X,Y)服从区域G={(x,y)\0
设(X,Y)在矩形域D上服从均匀分布,其中D:x^2≥y,0≤x≤1,y≥0,求(X,Y)的边缘概率密度
求联合概率密度设区域D是直线y=x,x=1及x轴所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)的联合
设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密
设二维随机变量(X,Y)在区域G上服从均匀分布,其中G是由曲线y=x^2和y=x所围成的,求联合概率密度
设二维随机向量(X,Y)的概率密度函数,f(x,y)=a(6-x-y),0