作业帮 > 数学 > 作业

证明f(x)在[a,b]连续,(a,b)二阶可导,f(a)=f(b)=0,f(c)>0知a

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 22:02:41
证明f(x)在[a,b]连续,(a,b)二阶可导,f(a)=f(b)=0,f(c)>0知a
证明f(x)在[a,b]连续,(a,b)二阶可导,f(a)=f(b)=0,f(c)>0知a
连续应用中值定理!
根据拉格朗日中值定理:
在(a,c)之间必存在一点u,使得:f'(u)= [f(c)-f(a)]/(c-a)= f(c)/(c-a)>0
在(c,b)之间必存在一点v,使得:f'(v)= [f(b)-f(c)]/(b-c)= -f(c)/(b-c)