初二几何题,相似三角形.如图,在△ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(不与A、C重合)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 02:48:41
初二几何题,相似三角形.如图,在△ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(不与A、C重合)点Q
如图,在△ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(不与A、C重合)点Q在BC上,在AB上存在点M,使得△PQM为等腰直角三角形,请求出PQ的长.
提示:三种情况.
如图,在△ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(不与A、C重合)点Q在BC上,在AB上存在点M,使得△PQM为等腰直角三角形,请求出PQ的长.
提示:三种情况.
易知△ABC斜边上的高为12/5,设PQ=x
如果PQ是△PQM的斜边,则PQ与AB的距离等于1/2PQ=1/2x,由△CPQ∽△ABC及相似三角形对应高的比等于相似比可得:x/5=(12/5-1/2x)/(12/5),解得:x=120/49
如果PQ是△PQM的直角边,则PQ与AB的距离等于PQ=x,同上可得:
x/5=(12/5-x)/(12/5),解得:x=60/37
使△PQM为等腰直角三角形的情况有三种,但PQ为腰的两种情况所求PQ的值相同
如果PQ是△PQM的斜边,则PQ与AB的距离等于1/2PQ=1/2x,由△CPQ∽△ABC及相似三角形对应高的比等于相似比可得:x/5=(12/5-1/2x)/(12/5),解得:x=120/49
如果PQ是△PQM的直角边,则PQ与AB的距离等于PQ=x,同上可得:
x/5=(12/5-x)/(12/5),解得:x=60/37
使△PQM为等腰直角三角形的情况有三种,但PQ为腰的两种情况所求PQ的值相同
相似三角形如图,在三角形ABC中AB=5,BC=4,AC=3,PQ平行于AB,点P在A C上 (不与A、C重合),在Q点
相似三角形的性质问题如图,在三角形ABC中AB=5,BC=4,AC=3,PQ平行于AB,点P在A C上 (不与A、C重合
如图,在ABC中,角C=90°,AC=4,BC=3,PQ平行AB,点P在AC上(与点A、C不重合),点Q在BC上.
如图:已知在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、c不重合),Q在BC上.
如图:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q在BC上.
在三角形ABC中,AB=5,BC=4,AC=3,PQ∥AB,P点在AC上(与点A,C不重合),点Q在BC上(AB为底).
如图,已知在△ABC中,AB=5,AC=4,BC=3,P点在AC上,(不与A,C重合)PQ∥AB交BC于Q.
如图,已知△ABC中,AB=5,BC=3,AC=4,PQ平行于AB,P点在AC上( 不与A,C重合)Q点在BC上
如图,已知△ABC中,AB=5,BC=3,AC=4.PQ‖AB,P点在AC上(与A,C点不重合),Q点在BC上
如图:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合)
在三角形ABC中,AB=10,BC=6,AC=8,PQ∥AB,P点在AC上(与点A,C不重合),点Q在BC上(AB为底)
1.已知三角形abc,ab=5,bc=3,ac=4,pq∥ab.p点在ac上(与a、c不重合).q在bc上