设x=e^(-t),变换方程x^2*d^2y/dx^2+x*dy/dx+y=0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 02:15:40
设x=e^(-t),变换方程x^2*d^2y/dx^2+x*dy/dx+y=0
设x=e^(-t),变换方程(x^2)*d^2y/dx^2+x*dy/dx+y=0
答案是d^x/dt^2+y=0
设x=e^(-t),变换方程(x^2)*d^2y/dx^2+x*dy/dx+y=0
答案是d^x/dt^2+y=0
x=e^(-t),dx/dt = -e^(-t) = -x
dy/dx = (dy/dt) / (dx/dt) = (-1/x) * dy/dt
d²y/dx² = (1/x²) * dy/dt + (-1/x) * d²y/dt² / (dx/dt) = (1/x²) * dy/dt + (1/x²) * d²y/dt²
= (1/x²) * [ dy/dt + d²y/dt² ]
x * dy/dx = - dy/dt,x² * d²y/dx² = dy/dt + d²y/dt²
代入原方程,得:d²y/dt² + y= 0
dy/dx = (dy/dt) / (dx/dt) = (-1/x) * dy/dt
d²y/dx² = (1/x²) * dy/dt + (-1/x) * d²y/dt² / (dx/dt) = (1/x²) * dy/dt + (1/x²) * d²y/dt²
= (1/x²) * [ dy/dt + d²y/dt² ]
x * dy/dx = - dy/dt,x² * d²y/dx² = dy/dt + d²y/dt²
代入原方程,得:d²y/dt² + y= 0
已知 x=e^t ,dy/dx=dy/xdt .分析变换具体步骤 d^2y/dx^2=(d^2y/dt^2-dy/dt)
设函数y=y(x)由x=1-e^t和y=t+e^-t确定,求dy/dx和d^2y/dx^2
令x=cost,变换方程d^2y/dx^2-x/(1-x^2)*dy/dx+y/(1-x^2)=0
证明x^2(d^2y/dx^2)+a_1x(dy/dx)+a_2y=0 ,令x=e^t,方程可化成d^2y/dt^2+(
d^2y /dx^2 - 24 =0 dy/dx -2y = e^-x
设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy
设x=e^-t y=e^-2t 求dy/dx
设x=3e^-t,y=2e^t,则dy/dx等于多少?
dy/dx+(e^((y^2)+x))/y=0
作变换u=tany,x=e的t次幂 试将方程 x^2d^2y/dx^2+2x^2(tany)(dy/dx)^2+xdy/
已知参数方程x=e^(2t)-1,y=2e^t,求dy/dx,d^2y/dx^2
设 {x=2t^3+2 y=e^2t-1 ,求dy/dx,d^2y/dx^2