(2014•江西模拟)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=C
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 13:52:09
(2014•江西模拟)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.
(1)求证:直线BF是⊙O的切线;
(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;
(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为
(1)求证:直线BF是⊙O的切线;
(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;
(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为
5
−5
3 |
(1)证明:如图,∵∠CBF=∠CFB,
∴CB=CF.
又∵AC=CF,
∴CB=
1
2AF,
∴△ABF是直角三角形,
∴∠ABF=90°,即AB⊥BF.
又∵AB是直径,
∴直线BF是⊙O的切线.
(2)如图,连接DO,EO,
∵点D,点E分别是弧AB的三等分点,
∴∠AOD=60°.
又∵OA=OD,
∴△AOD是等边三角形,
∴OA=AD=OD=5,∠OAD=60°,
∴AB=10.
∴在Rt△ABF中,∠ABF=90°,BF=AB•tan60°=10
3,即BF=10
3;
(3)如图,连接OC.则OC是Rt△ABF的中位线,
∵由(2)知,BF=10
3,
∴圆心距OC=5
3,
∵⊙O半径OA=5.
∴5
3−5<r<5
3+5.
故填:5
3−5<r<5
∴CB=CF.
又∵AC=CF,
∴CB=
1
2AF,
∴△ABF是直角三角形,
∴∠ABF=90°,即AB⊥BF.
又∵AB是直径,
∴直线BF是⊙O的切线.
(2)如图,连接DO,EO,
∵点D,点E分别是弧AB的三等分点,
∴∠AOD=60°.
又∵OA=OD,
∴△AOD是等边三角形,
∴OA=AD=OD=5,∠OAD=60°,
∴AB=10.
∴在Rt△ABF中,∠ABF=90°,BF=AB•tan60°=10
3,即BF=10
3;
(3)如图,连接OC.则OC是Rt△ABF的中位线,
∵由(2)知,BF=10
3,
∴圆心距OC=5
3,
∵⊙O半径OA=5.
∴5
3−5<r<5
3+5.
故填:5
3−5<r<5
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E点F在AC的延长线上,且∠CBF=1/2∠C
如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC延长线上,且AC=CF,角CBF=角CFB
如图在三角形ABC中,AC=AB,以AB为直径的圆O分别交AC,BC于点D,E,点F在AC的延长线上,且∠CBF=1/2
如图,在三角形ABC,AB=AC,以AB为直径的⊙O,分别交AC,BC于点D,E,点F在AC的延长线上,且∠CBF=2/
(2008•丹阳市模拟)如图,在△ABC中,AB=AC=5,BC=2,以AB为直径的⊙O分别交AC、BC两边于点D、E,
(2014•潮安区模拟)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过点D作DE⊥BC于点E.
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
已知:如图,在△ABC中,AB=AC.以AB为直径的⊙o交BC于点D,过点D做DE⊥AC于点E.延长DE交BA的延长线于
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为F.
如图,在△abc中,ab=ac,以ac为直径作圆o交bc于点e,过点d作fe⊥ab于点e,交ac的延长线于点f.
如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点D,过D做直线DE垂直BC于F,且交BA的延长线于点E.
如图,在△ABC中,AB=AC,以AC为直径的半圆O分别交AB、BC于点D、E.