矩阵A任意行的系数和小于1,问A-I是否可逆?可逆证明,否则举反例
A可逆,证明伴随矩阵可逆!
设A是n阶可逆矩阵,将A的第i行和第j行对换后得到矩阵B,证明B可逆,并求AB ̄1
一道关于矩阵可逆性的证明题:n阶矩阵A,B和A+B都可逆,证明A^(-1)+B(-1)也可逆,并求其逆阵.
设方阵A满足A^2-A-2I=0,证明:(1)A和I-A都可逆,并求它们的逆矩阵(2)A+I和A-2I不同时可逆
如果矩阵A可逆,证明A’(A的转置矩阵)也可逆.
设A B 为n阶矩阵,且A B AB-I 可逆 证明A-B的逆 可逆
设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆
设A 是 N阶可逆矩阵,将A 的第I行与第J行对换得到B ,证明B 为可逆矩阵.并指出A 和B,A^* 和B^*间的关系
证明:A,B为n阶矩阵,I-AB可逆,则I-BA可逆
可逆矩阵的等价矩阵是否可逆
证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆
证明:若方阵A可逆,则A的伴随矩阵A*也可逆.