已知函数f(x)=[x2+(2a-2)x+2-2a-b]ex(a,b∈R)在区间[-1,3]上是减函数,则a+b的最小值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 20:20:55
已知函数f(x)=[x2+(2a-2)x+2-2a-b]ex(a,b∈R)在区间[-1,3]上是减函数,则a+b的最小值是( )
A. 4
B. 2
C.
A. 4
B. 2
C.
3 |
2 |
∵f(x)=[x2+(2a-2)x+2-2a-b]ex(a,b∈R)在区间[-1,3]上是减函数,
∴f′(x)=ex(x2+2ax-b)<0,
∴x2+2ax-b<0,令g(x)=x2+2ax-b,
∵f(x)=[x2+(2a-2)x+2-2a-b]ex(a,b∈R)在区间[-1,3]上是减函数,
∴
g(−1)≤0
g(3)≤0,
即
2a+b≥1
b−6a≥9,①
在坐标平面内作直线 1-2a-b=0、9+6a-b=0,它们交于 A(-1,3),满足①(a,b)是 A 点上方区域,
令a+b=t,则 b=-a+t,t是直线在b轴上的截距,
平移直线,可以看出,当直线过A时,t最小为3-1=2.
故a+b的最小值是2.
故选:B.
∴f′(x)=ex(x2+2ax-b)<0,
∴x2+2ax-b<0,令g(x)=x2+2ax-b,
∵f(x)=[x2+(2a-2)x+2-2a-b]ex(a,b∈R)在区间[-1,3]上是减函数,
∴
g(−1)≤0
g(3)≤0,
即
2a+b≥1
b−6a≥9,①
在坐标平面内作直线 1-2a-b=0、9+6a-b=0,它们交于 A(-1,3),满足①(a,b)是 A 点上方区域,
令a+b=t,则 b=-a+t,t是直线在b轴上的截距,
平移直线,可以看出,当直线过A时,t最小为3-1=2.
故a+b的最小值是2.
故选:B.
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.)当a不等于2/3时,求函数f(x)的单调区间
已知a,b∈R且a≠2,定义在区间(-b,b)内的函数f(x)=lg1+ax1+2x是奇函数.
已知函数f(x)=-x^3+ax^2+b(a,b€R)(1)求函数f(x)的单调递增区间
已知函数f(x)=x^3+(1-a)x^2-a(a+2)x+b (a,b属于R),若函数f(x)在区间(-1,1)上不单
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).若函数f(x)的图象过原点,且在原点处的切线斜
已知函数f(x)=x3-ax2+bx+3(a,b∈R),若函数在区间[0,1]上单减,求a2+b2的最小值
已知函数f(x)=13x3+ax2-bx+1(a、b∈R)在区间[-1,3]上是减函数,则a+b的最小值是( )
已知函数f(x)=x²+ax+b-3(x∈R)的图像恒过点(2,0),则a²+b²的最小值
已知函数F(x)=x2+2x+alnx(a€R) 1,当a=-4,求F(x)的最小值 2.若F(x)在区间(
已知函数f(X)=ax3-3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,
已知函数f(x)=x³/3-[(a+1)x²]/2+bx+a(其中a,b∈R),其导函数f'(x)的
已知二次函数f(x)=x2-2ax+b2(a,b∈R),若a是从区间[-2,2]中随机抽取的一个数,b是从区间[-3,3