作业帮 > 数学 > 作业

已知向量a,向量b不共线,向量c=ka+b,向量d=a-b,若|向量a|=|向量b|,向量a与向量b夹角为60°,当k为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:11:02
已知向量a,向量b不共线,向量c=ka+b,向量d=a-b,若|向量a|=|向量b|,向量a与向量b夹角为60°,当k为何值时,c⊥d
已知向量a,向量b不共线,向量c=ka+b,向量d=a-b,若|向量a|=|向量b|,向量a与向量b夹角为60°,当k为
设 |a|=|b|=x ,由已知得 a*b=|a|*|b|*cos=x^2/2 ,
因为 c丄d ,所以 c*d=0 ,
即 (ka+b)*(a-b)=0 ,
展开得 ka^2-b^2+(1-k)a*b=0 ,
即 kx^2-x^2+(1-k)*x^2/2=0 ,
两端同除以 x^2 得 k-1+(1-k)/2=0 ,
解得 k=1 .