作业帮 > 数学 > 作业

lim(sinx/x)^(1/x^2)x趋向于0

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 08:47:57
lim(sinx/x)^(1/x^2)x趋向于0
用洛必达法则求极限,
lim(sinx/x)^(1/x^2)x趋向于0
原极限
=lim(x趋于0) e^[ln(sinx /x) *1/x^2]
显然在x趋于0的时候,sinx/x趋于1,
那么此时ln(sinx /x)=ln(1+sinx/x -1)就等价于sinx/x -1
所以ln(sinx /x) *1/x^2就等价于(sinx/x -1) /x^2=(sinx -x) /x^3
使用洛必达法则,
lim(x趋于0) (sinx -x) /x^3
=lim(x趋于0) (sinx -x)' / (x^3)'
=lim(x趋于0) (cosx -1) /3x^2 再求导
=lim(x趋于0) ( -sinx) / 6x
= -1/6
所以
原极限
=lim(x趋于0) e^[ln(sinx /x) *1/x^2]
=e^(-1/6)