已知x0=0,x1=1,xn+1=(xn+xn-1)/2,求n→无穷大时数列xn的极限
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 22:12:12
已知x0=0,x1=1,xn+1=(xn+xn-1)/2,求n→无穷大时数列xn的极限
x(n+2) = [x(n+1)+x(n)]/2,
x(n+2) - x(n+1) = -[x(n+1)-x(n)]/2,
{x(n+1)-x(n)}是首项为x(1)-x(0)=1,公比为(-1/2)的等比数列.
x(n+1)-x(n) = (-1/2)^n, n=0,1,2,..
x(n+2) + x(n+1)/2 = x(n+1) + x(n)/2,
{x(n+1) + x(n)/2}是首项为x(1)+x(0)/2 = 1,的常数数列.
x(n+1) + x(n)/2 = 1, n=0,1,2,...
1 - (-1/2)^n = [x(n+1)+x(n)/2] - [x(n+1)-x(n)] = 3x(n)/2,
n->无穷大时,3x(n)/2 -> 1 - 0 = 1, x(n) -> 2/3
x(n+2) - x(n+1) = -[x(n+1)-x(n)]/2,
{x(n+1)-x(n)}是首项为x(1)-x(0)=1,公比为(-1/2)的等比数列.
x(n+1)-x(n) = (-1/2)^n, n=0,1,2,..
x(n+2) + x(n+1)/2 = x(n+1) + x(n)/2,
{x(n+1) + x(n)/2}是首项为x(1)+x(0)/2 = 1,的常数数列.
x(n+1) + x(n)/2 = 1, n=0,1,2,...
1 - (-1/2)^n = [x(n+1)+x(n)/2] - [x(n+1)-x(n)] = 3x(n)/2,
n->无穷大时,3x(n)/2 -> 1 - 0 = 1, x(n) -> 2/3
已知X1=2 X(n+1)=Xn(1-Xn)^2 求Xn当n趋于无穷大时的极限
设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限
已知数列xn满足xn-xn^2=sin(xn-1/n),证明xn的趋向正无穷的极限为0
已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{xn}或者对任意正整数
数列{an}满足X1=a>0,Xn+1=1/2(Xn+a/Xn),n∈N*,若数列{Xn}的极限存在且大于0,求Xn(n
证明数列X1=2,Xn+1=0.5(Xn+1/Xn)的极限存在
求证一数列是柯西数列数列Xn,已知X1=1,X(n+1)=1+1/(Xn+1)求证Xn是柯西数列 并且求出Xn的极限
数列{Xn}中,x1=a>0,xn+1=1/2(xn+a/xn).若次数列的极限存在,且大于0,求这个极限.
设X0=7,X1=3,3Xn=2Xn-1+Xn-2,证明数列Xn收敛,并求极限
数列{Xn}中,X1>0,a>0,Xn+1=1/2(Xn+a/Xn).
X1=1,Xn=1+Xn/(1+Xn),n=1,2…,求Xn
数列极限已知数列xn=1+xn-1/(1+xn-1),x1=1,求该数列极限