已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),椭圆上存在一点P,使角F1PF2=120°,求椭圆的离心率的范
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 12:30:57
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),椭圆上存在一点P,使角F1PF2=120°,求椭圆的离心率的范围
设P为(m,n),则PF1=a+em ,PF2=a-em
因为(2c)^2 = (a+em)^2+(a-em)^2-2(a+em)(a-em)*cos120° (余弦定理)
所以4c^2 = 2a^2 + 2(em)^2 -a^2+(em)^2
即4c^2 =3a^2 +(em)^2
因为m^2<a^2
所以4c^2<3a^2 +e^2*a^2 ,即4e^2≤3+e^4
解得:e^2<1 ,0<e<1 (椭圆的离心率没其它限制)
因为(2c)^2 = (a+em)^2+(a-em)^2-2(a+em)(a-em)*cos120° (余弦定理)
所以4c^2 = 2a^2 + 2(em)^2 -a^2+(em)^2
即4c^2 =3a^2 +(em)^2
因为m^2<a^2
所以4c^2<3a^2 +e^2*a^2 ,即4e^2≤3+e^4
解得:e^2<1 ,0<e<1 (椭圆的离心率没其它限制)
已知F1F2是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是椭圆上一点,且∠F1PF2=90°,则椭圆的的离心率
f1,f2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)两焦点,P为椭圆上一点,角F1PF2=90度,求离心率的
椭圆x^2/a^2+y^/b^2=1 (a>b>0)的焦点F1,F2,椭圆上存在点P,使角F1PF2为钝角,求e的范围
椭圆x^2/a^2 +y^2/b^2 =1 (a>b>0)的两焦点分别为F1.F2,若椭圆上存在一点P使得∠F1PF2=
已知椭圆c:y^2/a^2+x^2/b^2=1(a>b>0)的离心率e=1/2,p(2,0)为该椭圆上一点,求 1.该椭
已知椭圆c:y^2/a^2+x^2/b^2=1(a>b>0)的离心率e=1/2,p(0,2)为该椭圆上一点,求
椭圆x^2/a^2+ y^2/b^2=1(a>b>0)存在一点P,它到椭圆的一个焦点F的距离为3/2乘a,求离心率的取值
一道高中椭圆题已知椭圆x^2/a^2+y^2/b^2=1的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得P
已知F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P为椭圆上一点,且角F1PF2=90度,
椭圆x^2/a^2+y^2/b^2=1(a>b>0),右顶点为A,若椭圆上存在一点M,使MA⊥MO,求离心率的取值范围
F1和F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的焦点,P是椭圆上一点,且角F1PF2=90度,求三角形
设p为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,A为长轴的右端点,若OP垂直PA求椭圆的离心率的取值范