如图所示,OC向量=2OP向量,AB向量=2AC向量,过P得直线分别交OB,OA于M,N,且OM向量=mOB向量,ON向
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 21:27:30
如图所示,OC向量=2OP向量,AB向量=2AC向量,过P得直线分别交OB,OA于M,N,且OM向量=mOB向量,ON向量=nOA向量,
如图所示,OC(向量)=2OP(向量),AB(向量)=2AC(向量),过P的直线分别交OB,OA于M,N,且OM(向量)=mOB(向量),ON(向量)=nOA(向量),则mn/m+n的值为
A4 B2/3 C1/4
D3/2
如图所示,OC(向量)=2OP(向量),AB(向量)=2AC(向量),过P的直线分别交OB,OA于M,N,且OM(向量)=mOB(向量),ON(向量)=nOA(向量),则mn/m+n的值为
A4 B2/3 C1/4
D3/2
由题给条件可知:C是AB边的中点、P是中线OC的中点、OM/OB=m、ON/OA=n;
mn/(m+n)=1/[(1/m)+(1/n)]=1/[(OB/OM)+(OA/ON)]=OM*ON/(OB*ON+OA*OM)
=[(OM*ON*sinO)/2]/[(OB*ON*sinO)/2+(OA*OM*sinO)/2]
=S△OMN/(S△OAM+S△OBN);
S△OMN=S△OPM+S△OPN=m*S△OPB+n*S△OPC
=m*S△OBC/2 +n*S△OAC/2=[(m+n)/4]*S△OAB;
S△OAM=m*S△OAB,S△OBN=n*S△OAB;
∴ mn/(m+n)={[(m+n)/4]*S△OAB}/(m*S△OAB+n*S△OAB)=1/4;故选 C;
mn/(m+n)=1/[(1/m)+(1/n)]=1/[(OB/OM)+(OA/ON)]=OM*ON/(OB*ON+OA*OM)
=[(OM*ON*sinO)/2]/[(OB*ON*sinO)/2+(OA*OM*sinO)/2]
=S△OMN/(S△OAM+S△OBN);
S△OMN=S△OPM+S△OPN=m*S△OPB+n*S△OPC
=m*S△OBC/2 +n*S△OAC/2=[(m+n)/4]*S△OAB;
S△OAM=m*S△OAB,S△OBN=n*S△OAB;
∴ mn/(m+n)={[(m+n)/4]*S△OAB}/(m*S△OAB+n*S△OAB)=1/4;故选 C;
3*向量OC-2*向量OA=向量OB,则向量AC=?向量AB
三角形OAB,向量OC=1/4向量OA,向量OD=1/2向量OB,AD与BC交于M,以向量OA、OB为基底表示OM…谢过
已知O是三角形ABC的外心,且向量OP=向量OA+向量OB+向量OC,向量OQ=1/3(向量OA+向量OB+向量OC),
如图所示,设过△OAB重心G的直线与边OA、OB分别交于点P、Q,设向量OP=h向量OA,向量OQ=k向量OB.求证:1
如图所示,设G为△ABO的重心,过G的直线与边OA,OB分别交于P,Q,已知向量OP=x向量OA,向量OQ=y向量OB,
平面内三点A B C共线,向量OA=(-2,m)向量OB=(n,1)向量OC=(5,-1),且向量OA垂直向量OB,求实
在△OAB中,向量OC=1/4向量OA,向量OD=1/2向量OB.AD与BC交于点M,设向量OA=向量a,向量OB=向量
已知直线y=kx+m与椭圆x↑2/2+y↑2=1交于AB两点,且椭圆上的点P满足向量OP=向量OA+向量OB,证明四边形
已知过三角形oab重心g的直线交oa,ob分别于点p,q,设op向量=moa向 量,oq向量= nob向量,求1/m+1
平面内三点ABC在一条直线上,向量OA=(-2,m) 向量OB=(n,1) 向量OC=(5,-1)且向量OA垂直于向量O
如图,已知C为△ABC边AB上一点,且向量AC=2向量CB,向量OC=m向量OA+n向量OB(m,n∈R),则mn=
如图,已知C为为△OAB边AB上一点,且向量AC=2向量CB.向量OC=m向量OA+n向量OB(m,n∈R),则mn=