求∫∫∫[1/(x^2+y^2+1)]dxdydz,其中D由锥面x^2+y^2=z^2及平面z=1所围成的闭区域.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:29:54
求∫∫∫[1/(x^2+y^2+1)]dxdydz,其中D由锥面x^2+y^2=z^2及平面z=1所围成的闭区域.
柱坐标,z的变化范围是√(x²+y²)1] rz/(r²+1) |[r---->1] dr
=2π∫[0--->1] r(1-r)/(r²+1) dr
=2π∫[0--->1] (r-r²)/(r²+1) dr
=2π∫[0--->1] (r-r²-1+1)/(r²+1) dr
=2π∫[0--->1] r/(r²+1) dr-2π∫[0--->1] 1 dr+2π∫[0--->1] 1/(r²+1) dr
=π∫[0--->1] 1/(r²+1) d(r²)-2π+2πarctanr
=πln(r²+1)-2π+2πarctanr |[0--->1]
=πln2-2π+π²/2
=2π∫[0--->1] r(1-r)/(r²+1) dr
=2π∫[0--->1] (r-r²)/(r²+1) dr
=2π∫[0--->1] (r-r²-1+1)/(r²+1) dr
=2π∫[0--->1] r/(r²+1) dr-2π∫[0--->1] 1 dr+2π∫[0--->1] 1/(r²+1) dr
=π∫[0--->1] 1/(r²+1) d(r²)-2π+2πarctanr
=πln(r²+1)-2π+2πarctanr |[0--->1]
=πln2-2π+π²/2
计算三重积分 ∫∫∫(x^2+y^2+z)dxdydz 其中D为曲面z=1-x^2-y^2与xOy平面所围成的区域.
∫∫∫(xy)dxdydz ,其中Ω是由柱面x^2+y^2=1及平面z=1,z=0,x=0,y=0所围成的在第一卦限的闭
计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,
计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域.
求曲面∫∫(x^2+y^2)ds的积分,∑是锥面z=✔(x^2+y^2)及平面z=1所围成的区域的整个边界
投影法和截面法求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所围成空间闭
计算三重积分∫∫∫(x+y+x)dxdydz其中Ω,曲面z^2=x^2+y^2与平面z=1围成的闭区域
计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域中过程的疑问
计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域.
设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy
用投影法和截面法分别计算求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所
∫s∫e/ √(X^2+Y^2)dxdy其中S为锥面z=√X^2+Y^2及平面z=1,z=2所围立体整个边界外侧(√为根