如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥AC于F,EG⊥
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 01:01:31
如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥AC于F,EG⊥AD于G.
(1)请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明;
(2)若AB=3,AC=5,求AF的长.
(1)请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明;
(2)若AB=3,AC=5,求AF的长.
(1)△EGA≌△EFA(或△EGB≌△EFC).
证明:∵AE平分∠CAD,
∴∠EAG=∠EAF.
又∵EF⊥AC,EG⊥AD,
∴∠EGA=∠EFA=90°.
在△AEG和△EFA中:
∠EAG=∠EAF,∠EGA=∠EFA,AE=AE,
∴△EGA≌△EFA(AAS).
证明:(2)∵AE平分∠CAD且EF⊥AC,EG⊥AD,
∴EG=EF,∠EGB=∠EFC=90°.
在Rt△EGB和Rt△EFC中
EG=EF
EB=EC.
∴Rt△EGB≌Rt△EFC(HL).
∴BG=CF.(10分)
又∵BG=AB+AG,CF=AC-AF,
即AB+AG=AC-AF,
又∵△EGA≌△EFA,
∴AG=AF.
∴2AF=AC-AB=5-3=2.
∴AF=1.
证明:∵AE平分∠CAD,
∴∠EAG=∠EAF.
又∵EF⊥AC,EG⊥AD,
∴∠EGA=∠EFA=90°.
在△AEG和△EFA中:
∠EAG=∠EAF,∠EGA=∠EFA,AE=AE,
∴△EGA≌△EFA(AAS).
证明:(2)∵AE平分∠CAD且EF⊥AC,EG⊥AD,
∴EG=EF,∠EGB=∠EFC=90°.
在Rt△EGB和Rt△EFC中
EG=EF
EB=EC.
∴Rt△EGB≌Rt△EFC(HL).
∴BG=CF.(10分)
又∵BG=AB+AG,CF=AC-AF,
即AB+AG=AC-AF,
又∵△EGA≌△EFA,
∴AG=AF.
∴2AF=AC-AB=5-3=2.
∴AF=1.
如图,△ABC中,AC>AB,D是BA延长线上的一点,点E是∠CAD平分线上的一点,EB=EC过点E作EF⊥AC于F,E
如图1,在三角形ABC中,AC>AB,D是BA延长线上一点,E是∠CAD的平分线上一点,且EB=EC,过点E做EF⊥AC
在△ABC中(AC>AB),点E是∠CAD的平分线上的一点,BE=CE,作EF⊥AC于F,作EG⊥G
如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,
等边三角形ABC中,点E是AB上一点,点D在CB延长线上,ED=EC,过点E作EF平行BC,交AC于点F.1.说明BD=
如图,点E是∠BAC的角平分线上的一点,过点E作EF⊥AB于点F,EG⊥AC于点G,BF=CG,过点E作ED⊥BC于点D
已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是
如图,在△ABC中,D是BC上一点,过点D分别作DE平行AC交AB于E,DF平行AB交AC于F,点P是ED延长线上一点,
如图,在△ABC中,BA=BC,点D是AB延长线上的一点,DF⊥AC于点F,叫BC于点E,求证:△DBE是等腰三角形
如图在三角形abc中,ab>ac,点o是角a的平分线上的一点,过o点作oe⊥ab于e,作of⊥ac交ac延长线于f,且b
如图,在△ABC中,AD平分∠ABC,E是CA延长线上的一点,EG//AD,交AB于点F.求证:AE=AF
如图,D是△ABC中AB边上的一点,E是CA延长线上的点,AB=AC,AE=AD,连接ED并延长交BC于F.求证EF⊥B