已知x=2t+t^2,y=u(t),求得dy/dx=u'(t)/(2+2t),到这里都没问题,但是接下来求d^2y/dx
x=t^2+t y=ln(1+t) 求dy/dx
x=2t+cost y=t+e^t 求dy/dx
设函数y=y(x)由x=1-e^t和y=t+e^-t确定,求dy/dx和d^2y/dx^2
设参数方程 x=∫(1,t) ulnudu y=∫(1,t) u^2lnudu 确定了函数 y=y(x) 求dy/dx
已知参数方程x=e^(2t)-1,y=2e^t,求dy/dx,d^2y/dx^2
设x=t+arctan t+1,y=t的立方+6t-2,求dy/dx
x=2(cot t),y=2(sin²t),用t表示dy/dx
设x=e^-t y=e^-2t 求dy/dx
已知 x=e^t ,dy/dx=dy/xdt .分析变换具体步骤 d^2y/dx^2=(d^2y/dt^2-dy/dt)
高数题设x=(t+1)e^t,y=t^2*e^t,求d^2y/dx^2
(x+y)^2 dy/dx=1做变换t=x+y后,求得通解为
已知参数方程x=t+t^2,y=cost.求导数dy/dx和d^2y/dx^2