线性代数第五章的课后习题: 设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是
线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值
线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;
一道线性代数的问题设A=E+aaT(aT为a的转置),其中a=(a1,a2,a3)T,且aaT=2,求一个可你矩阵P,使
线性代数习题解答?线性代数第四章向量组的线性相关性设b1=a1+2a2b2=a2+2a3b3=a3+2a1b4=a1+a
线性代数证明题证明题设A是3×4矩阵,秩r(A)=1,若向量a1=(1,2,0,2)T,a2=(1,-1,a,5)T,a
线性代数证明题目设A是n 阶方程,且满足AAt(t在右上) =En和|A|=-1,证明:|A+En|=0
设a1,a2...an是Rn的一个基,a∈Rn,证明:若(a,ai)=0,i=1,2...n,则a=0
线性代数证明题设a1,a2,...,an使n个互不相同的数,令a1=(1,x1,x1^2,...x1^(n-1))T,.
线性代数问题设对称阵A 其特征值互不相等 特征值对应的特征向量分别为a1,a2,a3.an则P=(a1,a2,a3.an
线性代数证明题A为n阶矩阵,a1,a2,a3是n维向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+
一道线性代数证明题Aa1=0.Aa2=a1,A^2(a3)=a1 求证a1 a2 a3 线性无关..都是非0的
线性代数矩阵题证明:与对角矩阵A=diag(a1,a2……an)(其中a1,a2……an两两不相等)可交换的矩阵必定是对